分享
分享赚钱 收藏 举报 版权申诉 / 24

类型2022-2023学年人教版八年级数学上册第十一章三角形章节练习试卷(附答案详解).docx

  • 上传人:a****
  • 文档编号:636009
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:24
  • 大小:523.19KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 人教版 八年 级数 上册 第十一 三角形 章节 练习 试卷 答案 详解
    资源描述:

    1、人教版八年级数学上册第十一章三角形章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ABCD,BED=61,ABE的平分线与CDE的平分线交于点F,则DFB=()A149B149.5C150D

    2、150.52、如果一个多边形的内角和是外角和的5倍,那么这个多边形的边数是()A10B11C12D133、如图,在ABC中,D为BC上一点,12,34,BAC105,则DAC的度数为()A80B82C84D864、将正六边形与正五边形按如图所示方式摆放,公共顶点为O,且正六边形的边AB与正五边形的边DE在同一条直线上,则COF的度数是()A74B76C84D865、如图,在ABC中,AD是高,AE是角平分线,AF是中线,则下列说法中错误的是()ABFCFBCCAD90CBAFCAFD6、如图,将沿翻折,三个顶点恰好落在点处若,则的度数为()ABCD7、下列说法中正确的是()A三角形的三条中线必

    3、交于一点B直角三角形只有一条高C三角形的中线可能在三角形的外部D三角形的高线都在三角形的内部8、三个等边三角形的摆放位置如图所示,若,则的度数为()ABCD9、能说明“锐角,锐角的和是锐角”是假命题的例证图是()ABCD10、若正多边形的一个外角是,则这个正多边形的内角和是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,是的中线,点F在上,延长交于点D若,则_2、若一个多边形内角和等于1260,则该多边形边数是_3、如图,将三角尺和三角尺 (其中)摆放在一起,使得点在同一条直线上,交于点,那么度数等于_4、如图,把三角形纸片沿折叠,使点落在四边形外部,

    4、那么,之间的数量关系是_5、如图,则A+B+C+D+E的度数是_三、解答题(5小题,每小题10分,共计50分)1、一个正多边形的周长为,边长为,一个外角为(1)若,求的值;(2)若,求的值2、一个正多边形的每一个外角都等于36,求这个多边形的边数3、(1)已知:如图,边形求证:边形的内角和等于;(2)在一个各内角都相等的多边形中,每一个内角都比相邻的外角的3倍还大20求这个多边形的内角和;(3)粗心的小明在计算一个多边形的内角和时,误把一个外角也加进去了,得其和为1180请直接写出这个多加的外角度数及多边形的边数4、【相关概念】将多边形的内角一边反向延长,与另一条边相夹形成的那个角叫做多边形的

    5、外角如图,将中的边CB反向延长,与另一边AC形成的即为的一个外角三角形外角和与三角形内角和对应,为与三个内角分别相邻的三个外角的和【求解方法】借助一组内角与外角的数量关系,可以求出三角形的外角和如图,的外角和【自主探究】根据以上提示,完成下列问题:(1)将下列表格补充完整名称图形内角和外角和三角形180360四边形五边形n边形(2)如果一个八边形的每一个内角都相等,请用两种不同的方法求出这个八边形一个内角的度数5、已知,RtABC中,C90,点D、E分别是边AC,BC上的点,点P是斜边AB上一动点令PDA1,PEB2,DPE(1)如图所示,当点P运动至50时,则1+2 ;(2)如图所示,当P运

    6、动至AB上任意位置时,试探求,1,2之间的关系,并说明理由-参考答案-一、单选题1、B【解析】【分析】过点E作EGAB,根据平行线的性质可得“ABE+BEG=180,GED+EDC=180”,根据角的计算以及角平分线的定义可得“FBE+EDF=ABE+CDE)”,再依据四边形内角和为360结合角的计算即可得出结论【详解】如图,过点E作EGAB,ABCD,ABCDGE,ABE+BEG=180,GED+EDC=180,ABE+CDE+BED=360;又BED=61,ABE+CDE=299ABE和CDE的平分线相交于F,FBE+EDF=(ABE+CDE)=149.5,四边形的BFDE的内角和为360

    7、,BFD=360-149.5-61=149.5故选B【考点】本题考查了平行线的性质、三角形内角和定理以及四边形内角和为360,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键2、C【解析】【分析】设多边形的边数为n,根据多边形外角和与内角和列式计算即可;【详解】解:设多边形的边数为n,根据题意可得:,化简得:,解得:;故选:C【考点】本题主要考查了多边形的内角和与外角和,结合一元一次方程求解是解题的关键3、A【解析】【分析】根据三角形的内角和定理和三角形的外角性质即可解决【详解】解:BAC105,237512,431222把代入得:3275,225DAC1052580故选A【考点

    8、】此题主要考查了三角形的外角性质以及三角形内角和定理,熟记三角形的内角和定理,三角形的外角性质是解题的关键4、C【解析】【分析】利用正多边形的性质求出EOF,BOC,BOE即可解决问题【详解】解:由题意得:EOF108,BOC120,OEB72,OBE60,BOE180726048,COF3601084812084,故选:【考点】本题考查正多边形,三角形内角和定理等知识,解题的关键是熟练掌握基本知识5、C【解析】【分析】根据三角形的角平分线、中线和高的概念判断【详解】解:AF是ABC的中线,BF=CF,A说法正确,不符合题意;AD是高,ADC=90,C+CAD=90,B说法正确,不符合题意;A

    9、E是角平分线,BAE=CAE,C说法错误,符合题意;BF=CF,SABC=2SABF,D说法正确,不符合题意;故选:C【考点】本题考查的是三角形的角平分线、中线和高,掌握它们的概念是解题的关键6、D【解析】【分析】根据翻折变换前后对应角不变,故B=EOF,A=DOH,C=HOG,1+2+HOD+EOF+HOG=360,进而求出1+2的度数【详解】解:将ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,B=EOF,A=DOH,C=HOG,1+2+HOD+EOF+HOG=360,HOD+EOF+HOG=A+B+C=180,1+2=360-180=180,1=40,2=140,故选:D【

    10、考点】此题主要考查了翻折变换的性质和三角形的内角和定理,根据已知得出HOD+EOF+HOG=A+B+C=180是解题关键7、A【解析】【分析】根据三角形中线及高线的定义逐一判断即可得答案【详解】A.三角形的三条中线必交于一点,故该选项正确,B.直角三角形有三条高,故该选项错误,C.三角形的中线不可能在三角形的外部,故该选项错误,D.三角形的高线不一定都在三角形的内部,故该选项错误,故选:A【考点】本题考查三角形的中线及高线,熟练掌握定义是解题关键8、B【解析】【分析】先根据图中是三个等边三角形可知三角形各内角均等于60,用表示出中间三角形的各内角,再根据三角形的内角和即可得出答案【详解】解:如

    11、图所示,图中三个等边三角形,由三角形的内角和定理可知:,即,又,故答案选B【考点】本题考查等边三角形的性质及三角形的内角和定理,熟悉等边三角形各内角均为60是解答此题的关键9、C【解析】【分析】先将每个图形补充成三角形,再利用三角形的外角性质逐项判断即得答案【详解】解:A、如图1,1是锐角,且1=,所以此图说明“锐角,锐角的和是锐角”是真命题,故本选项不符合题意; B、如图2,2是锐角,且2=,所以此图说明“锐角,锐角的和是锐角”是真命题,故本选项不符合题意;C、如图3,3是钝角,且3=,所以此图说明“锐角,锐角的和是锐角”是假命题,故本选项符合题意;D、如图4,4是锐角,且4=,所以此图说明

    12、“锐角,锐角的和是锐角”是真命题,故本选项不符合题意故选:C【考点】本题考查了真假命题、举反例说明一个命题是假命题以及三角形的外角性质等知识,属于基本题型,熟练掌握上述基本知识是解题的关键10、B【解析】【分析】利用多边形外角求得该多边形的边数,再利用多边形内角和公式即可解答【详解】解:多边形外角和为360,故该多边形的边数为36060=6;多边形内角和公式为:(n-2)180=(6-2)180=720故选:B【考点】本题考查了多边形外角和以及多边形内角和公式,熟练掌握相关公式是解题关键二、填空题1、【解析】【分析】连接ED,由是的中线,得到,由,得到,设,由面积的等量关系解得,最后根据等高三

    13、角形的性质解得,据此解题即可【详解】解:连接ED是的中线,设,与是等高三角形,故答案为:【考点】本题考查三角形的中线、三角形的面积等知识,是重要考点,难度一般,掌握相关知识是解题关键2、9【解析】【分析】这个多边形的内角和是1260n边形的内角和是(n-2)180,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数【详解】根据题意,得(n-2)180=1260,解得:n=9故答案为:9【考点】此题考查了多边形内角和以及多边形内角和外角的关系,解题的关键是熟练掌握多边形内角和以及多边形内角和外角的关系3、105【解析】【分析】利用直角三角形的两个锐角互余求得ABC

    14、与FDE的度数,然后在MDB中,利用三角形内角和定理求得DMB,再依据对顶角相等即可求解【详解】解:ABC90C906030,FDE90F904545,DMB180ABCFDE1803045105,CMFDMB105故答案为:105【考点】本题考查了直角三角形两锐角互余、三角形的内角和定理以及对顶角的性质,正确求得DMB的度数是关键4、【解析】【分析】利用折叠的性质用和表示出与,在中利用三角形内角和定理求解【详解】解:由折叠的性质可知,在中,整理得故答案为:【考点】本题考查了折叠的性质,三角形内角和定理,解决本题的关键是找到折叠中相等的角5、180【解析】【分析】由三角形的一个外角等于与它不相

    15、邻的两个内角的和,得4A2,2DC,进而利用三角形的内角和定理求解【详解】解:如图可知:4是三角形的外角,4A2,同理2也是三角形的外角,2DC,在BEG中,BE4180,BEADC180故答案为:180【考点】本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系三、解答题1、(1)36;(2)5【解析】【分析】(1)根据周长公式,可得多边形的边数,再根据多边形的外角和,可得答案(2)根据多边形的外角和,可得多边形的边数,根据周长公式,可得答案【详解】解:(1)正多边形的周长为,边长为,正多边形的边数=606=10,正多边形的一个外角为b=36010=36,(2)正多

    16、边形的一个外角为,正多边形的边数=36030=12,正多边形的周长为,边长为, a=6012=5,【考点】本题考查了多边形的外角和以及正多边形的性质,利用多边形的外角和得出多边形的边数是解题关键2、10【解析】【分析】多边形的外角和是固定的360,依此可以求出多边形的边数【详解】解:一个正多边形的每个外角都等于36,这个多边形的边数为36036=10【考点】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握3、(1)见解析;(2)1260;(3)100,8【解析】【分析】(1)由从n边形的一个顶点可以作(n3)条对角线,根据分割

    17、的三角形个数及三角形内角和定理解答;(2)设多边形的一个外角为,则与其相邻的内角为(320),由邻补角的和为180解答;(3)由内角和公式得到内角和是180的倍数,可解得多边形的边数,据此解答【详解】解:(1)从n边形的一个顶点可以作(n3)条对角线,得出把三角形分割成的三角形个数为:n3+1n2这(n2)个三角形的内角和都等于180,n边形的内角和是(n2)180(方法不唯一)(2)设多边形的一个外角为,则与其相邻的内角为(320)由题意,得(320)180解得40,即多边形的每个外角为40多边形的外角和为360,多边形的边数为360409内角和为(92)1801260答:这个多边形的内角和

    18、为1260(3)因为1180=1806+100所以该多边形的边数是8,这个外角的度数是100【考点】本题考查多边形的内角和与外角和定理,是基础考点,掌握相关知识是解题关键4、 (1)内角和分别为:360、540、180(n-2);外角和分别为:360、360、360(2)135【解析】【分析】(1)分别对图中四边形和五边形标注字母,然后根据题目中所给定的方法分别计算其内角和与外角和,最后根据规律确定出n边形的内角和与外角和即可;(2)方法一:根据(1)中内角和公式求出内角和,然后除以角的个数即可;方法二:先求出各个外角的度数,然后用减去一个外角的度数,即为内角度数(1)解:四边形标定字母如图所

    19、示,连接CG,四边形分为两个三角形,四边形内角和为,外角和为:,;五边形标定字母如图所示,连接DA,DB,五边形分为三个三角形,五边形内角和为,外角和为:,;当为n边形时,可以分为个三角形,n边形内角和为;外角和为定值;故答案为:内角和分别为:、; 外角和分别为:、;(2)解:方法一:,方法二:【考点】题目主要考查多边形内角和与外角和定理,理解题意,熟练掌握多边形内角和与外角和定理是解题关键5、(1);(2),理由见解析【解析】【分析】(1)根据平角的定义求得,进而根据四边形的内角和等于360,以及50,即可求得1+2的值;(2)方法同(1)【详解】(1),在四边形中,50,故答案为:(2),理由如下,在四边形中,【考点】本题考查了平角的定义,四边形内角和为360,掌握四边形的内角和是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年人教版八年级数学上册第十一章三角形章节练习试卷(附答案详解).docx
    链接地址:https://www.ketangku.com/wenku/file-636009.html
    相关资源 更多
  • 专题6.22 相似三角形的性质(巩固篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx专题6.22 相似三角形的性质(巩固篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx
  • 专题6.22 反比例函数(折叠问题)(培优篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx专题6.22 反比例函数(折叠问题)(培优篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx
  • 专题6.22 一次函数与二元一次方程(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册基础知识专项突破讲与练(苏科版).docx专题6.22 一次函数与二元一次方程(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册基础知识专项突破讲与练(苏科版).docx
  • 专题6.22 《反比例函数》全章复习与巩固(巩固篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx专题6.22 《反比例函数》全章复习与巩固(巩固篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx
  • 专题6.21 相似三角形的性质(基础篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx专题6.21 相似三角形的性质(基础篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx
  • 专题6.21 反比例函数(折叠问题)(综合篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx专题6.21 反比例函数(折叠问题)(综合篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx
  • 专题6.21 《反比例函数》全章复习与巩固(基础篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx专题6.21 《反比例函数》全章复习与巩固(基础篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx
  • 专题6.20 相似三角形的性质(知识讲解)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx专题6.20 相似三角形的性质(知识讲解)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx
  • 专题6.20 反比例函数和一次函数综合(培优篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx专题6.20 反比例函数和一次函数综合(培优篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx
  • 专题6.20 《反比例函数》全章复习与巩固(知识讲解)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx专题6.20 《反比例函数》全章复习与巩固(知识讲解)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx
  • 专题6.2 期末押题卷(沪科版)(原卷版).docx专题6.2 期末押题卷(沪科版)(原卷版).docx
  • 专题6.2 普查和抽样调查(培优分阶练)(解析版).docx专题6.2 普查和抽样调查(培优分阶练)(解析版).docx
  • 专题6.2 数量积及最值(范围)问题(原卷版).docx专题6.2 数量积及最值(范围)问题(原卷版).docx
  • 专题6.2 数据的收集与整理(全章分层练习)(基础练)-2023-2024学年七年级数学上册基础知识专项突破讲与练(北师大版).docx专题6.2 数据的收集与整理(全章分层练习)(基础练)-2023-2024学年七年级数学上册基础知识专项突破讲与练(北师大版).docx
  • 专题6.2 图形的相似(全章分层练习)(基础练)-2023-2024学年九年级数学下册全章复习与专题突破讲与练(苏科版).docx专题6.2 图形的相似(全章分层练习)(基础练)-2023-2024学年九年级数学下册全章复习与专题突破讲与练(苏科版).docx
  • 专题6.2 反比例函数(基础篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx专题6.2 反比例函数(基础篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx
  • 专题6.2 反比例函数的实际应用(知识解读)-2022-2023学年九年级数学上册《同步考点解读•专题训练》(北师大版).docx专题6.2 反比例函数的实际应用(知识解读)-2022-2023学年九年级数学上册《同步考点解读•专题训练》(北师大版).docx
  • 专题6.2 反比例函数的实际应用(专项训练)(解析版).docx专题6.2 反比例函数的实际应用(专项训练)(解析版).docx
  • 专题6.2等差数列(原卷版).docx专题6.2等差数列(原卷版).docx
  • 专题6.2等差数列(解析版).docx专题6.2等差数列(解析版).docx
  • 专题6.1小题易丢分期末考前必做选择30题(提升版) 【苏科版】(解析版).docx专题6.1小题易丢分期末考前必做选择30题(提升版) 【苏科版】(解析版).docx
  • 专题6.1反比例函数新版初中北师大版数学9年级上册同步培优专题题库(教师版) .docx专题6.1反比例函数新版初中北师大版数学9年级上册同步培优专题题库(教师版) .docx
  • 专题6.19 反比例函数中的几何模型(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx专题6.19 反比例函数中的几何模型(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx
  • 专题6.18 探索三角形相似的条件(培优篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx专题6.18 探索三角形相似的条件(培优篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx
  • 专题6.18 反比例函数解题方法-设参求值(巩固篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx专题6.18 反比例函数解题方法-设参求值(巩固篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx
  • 专题6.18 反比例函数和一次函数综合(基础篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx专题6.18 反比例函数和一次函数综合(基础篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx
  • 专题6.17 探索三角形相似的条件(巩固篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx专题6.17 探索三角形相似的条件(巩固篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx
  • 专题6.17 一次函数的图象(直通中考)(培优练)-2023-2024学年八年级数学上册基础知识专项突破讲与练(苏科版).docx专题6.17 一次函数的图象(直通中考)(培优练)-2023-2024学年八年级数学上册基础知识专项突破讲与练(苏科版).docx
  • 专题6.16 探索三角形相似的条件(基础篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx专题6.16 探索三角形相似的条件(基础篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1