分享
分享赚钱 收藏 举报 版权申诉 / 19

类型2022-2023学年人教版八年级数学上册第十五章分式综合测评试题(含详细解析).docx

  • 上传人:a****
  • 文档编号:636368
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:19
  • 大小:254.34KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 人教版 八年 级数 上册 第十五 分式 综合 测评 试题 详细 解析
    资源描述:

    1、人教版八年级数学上册第十五章分式综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有一段全长为800米的公路,路面需整改,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的功效比原计划增加1

    2、0%,结果提前3天完成这一任务,设原计划每天整改x米,则下列方程正确的是()ABCD2、已知关于x的分式方程无解,且关于y的不等式组有且只有三个偶数解,则所有符合条件的整数m的乘积为()A1B2C4D83、如果关于x的分式方程的解为整数,且关于y的不等式组有解,则符合条件的所有整数a的和为()A1B0C1D44、要把分式方程化为整式方程,方程两边要同时乘以()ABCD5、若分式在实数范围内有意义,则实数x的取值范围是()Ax2Bx2Cx=2Dx26、关于x的方程2+有增根,则k的值为()A3B3C3D27、若分式的值为零,则的值为()A-3B-1C3D8、若把分式中的和同时扩大为原来的3倍,则

    3、分式的值()A扩大到原来的3倍B扩大到原来的6倍C缩小为原来的D不变9、下列各式从左到右变形正确的是()A+=3(x+1)+2yB=C=D=10、约分:()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算的结果是_2、若分式的值为负数,则x的取值范围是_3、若方程的根为负数,则k的取值范围是_。4、计算(1)(x)(2)(2)(4)5、用换元法解方程,如果设,那么原方程组可化为关于,的方程组是_三、解答题(5小题,每小题10分,共计50分)1、计算:(1)(3)2(3)0 (2)(2a)3b3(6a3b2)2、当a为何值时,关于x的方程无解.3、接种疫苗是阻

    4、断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂(1)求该厂当前参加生产的工人有多少人?(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务?4、如果解关于的方程会产生增根,求的值.5、为保障蔬菜基地种植用水,需要修建灌溉水渠(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原

    5、来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工甲施工队按(1)中增加人员后的修建速度进行施工乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同求乙施工队原来每天修建灌溉水渠多少米?-参考答案-一、单选题1、C【解析】【分析】用x表示出计划和实际完成的时间,再结合实际比计划提前3天完成任务作为等量关系列方程即可【详解】实际每天整改米,则实际完成时间天,计划完成时间天,实际比计划提

    6、前3天完成任务得方程故选C【考点】本题考查了分式方程的应用列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据而难点则在于对题目已知条件的分析,找出等量关系,因此需围绕题中关键词进行分析2、B【解析】【分析】分式方程无解的情况有两种,第一种是分式方程化成整式方程后,整式方程无解,第二种是分式方程化成整式方程后有解,但是解是分式方程的增根,以此确定m的值,不等式组整理后求出解集,根据有且只有三个偶数解确定出m的范围,进而求出符合条件的所有m的和即可【详解】解:分式方程去分母得:,整理得:,分式方程无解的情况有两种,情况一:整式方程无解时,即时,方程无解,;情况

    7、二:当整式方程有解,是分式方程的增根,即x=2或x=6,当x=2时,代入,得:解得:得m=4当x=6时,代入,得:,解得:得m=2综合两种情况得,当m=4或m=2或,分式方程无解;解不等式,得:根据题意该不等式有且只有三个偶数解,不等式组有且只有的三个偶数解为8,6,4,4m42,0m2,综上所述当m=2或时符合题目中所有要求,符合条件的整数m的乘积为21=2故选B【考点】此题考查了分式方程的无解的问题,以及一元一次不等式组的偶数解,其中分式方程无解的情况有两种情况,一种是分式方程化成整式方程后整式方程无解,另一种是化成整式方程后有解,但是解为分式方程的增根,易错点是容易忽略某种情况;对于已知

    8、一元一次不等式组解,求参数的值,找到参数所表示的代数式的取值范围是解题关键3、A【解析】【分析】先解分式方程,根据分式方程有整数解求解的值,再根据一元一次不等式组有解,求解的取值范围,从而可得答案.【详解】解: 关于x的分式方程的解为整数, 则 或 解得:或或或 又 则 即 所以或或由得: 由得: 关于y的不等式组有解, 综上:或 符合条件的所有整数a的和为 故选A【考点】本题考查的是分式方程的整数解,根据一元一次不等式组有解求解参数的取值范围,掌握“解分式方程及分式方程的整数解的含义,一元一次不等式组有解的含义”是解本题的关键.4、D【解析】【分析】根据最简公分母的确定方法确定分式的最简公分

    9、母即可解答.【详解】解:分式的最简公分母2x(x-2),把分式方程化为整式方程,方程两边要同时乘以2x(x-2).故选D.【考点】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根5、D【解析】【分析】直接利用分式有意义的条件分析得出答案【详解】代数式在实数范围内有意义,x+20,解得:x2,故选D【考点】本题主要考查了分式有意义的条件,熟练掌握分母不为0时分式有意义是解题的关键6、D【解析】【分析】根据增根的定义可求出x的值,把方程去分母后,再把求得的x的值代入计算即可.【详解】解:原方程有增根,最简公分母x30,解得x3,方程两边

    10、都乘(x3),得:x12(x3)+k,当x3时,k2,符合题意,故选D【考点】本题考查的是分式方程的增根,在分式方程变形的过程中,产生的不适合原方程的根叫做分式方程的增根.增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程7、A【解析】【分析】根据分式的值为零的条件即可求出答案【详解】解:由题意可知:解得:x=-3,故选:A【考点】本题考查分式的值,解题的关键是熟练运用分式的值为零的条件8、D【解析】【分析】根据分式的基本性质即可求出答案【详解】解:,把分式中的和同时扩大为原来的3倍,则分式的值不变,故选:D【考点】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,

    11、本题属于基础题型9、C【解析】【分析】根据分式的性质逐项分析即可A选项分子分母同时乘以6,B选项分子分母同时乘以100,C选项分子分母同时乘以-1,D选项分子因式分解【详解】A+=, 故该选项不正确,不符合题意;B=, 故该选项不正确,不符合题意;C=,故该选项正确,符合题意;D=,故该选项不正确,不符合题意;故选C【考点】本题考查了分式的性质,掌握分式的性质是解题的关键10、A【解析】【分析】先进行乘法运算,然后约去分子分母的公因式即可得到答案.【详解】原式=,故选A.【考点】本题主要考查分式的乘法运算法则,掌握约分,是解题的关键.二、填空题1、 【解析】【详解】【分析】根据分式的加减法法则

    12、进行计算即可得答案【详解】原式=,故答案为.【考点】本题考查分式的加减运算,熟练掌握分式加减的运算法则是解题的关键,本题属于基础题.2、【解析】【分析】根据分式值为负的条件列出不等式求解即可【详解】解:0x-20,即故填:【考点】本题主要考查了分式值为负的条件,根据分式小于零的条件列出不等式成为解答本题的关键3、k2且k3【解析】【分析】方程两边都乘以(x+3)(x+k),化成整式方程,然后解关于x的一元一次方程,再根据解是负数得到关于k的一元一次不等式,解不等式即可,再根据分式方程的分母不等于0求出x-3,列式求出k的值,然后联立即可得出答案【详解】解:方程两边都乘以(x+3)(x+k)得,

    13、3(x+k)=2(x+3),解得x=-3k+6,方程的解是负数,-3k+60,解得k2,又x+30,x+k0,x-3,x-k-3k+6-3, -3k+6-kk3,k2且k3故答案为:k2且k3【考点】本题考查了分式方程的解的应用,以及一元一次不等式的解法,需要注意方程的分母不等于0的情况得到k的另一范围,是一道比较容易出错的题目4、(1)28x3;(2);(3)(xy)4;(4)x27【解析】【分析】(1)先计算乘方,再计算除法,最后计算减法即可;(2)先计算零次幂,乘方,再计算加减法;(3)先计算乘方,再计算乘法即可;(4)先按照完全平方公式、去括号法则去括号,再合并同类项.【详解】(1)(

    14、x),=-,=,=28x3;(2),=1-+4,=;(3),=,=;(4)=,= x27.【考点】此题考查计算能力,有理数的混合运算,整式的混合运算,按照先计算乘方再算乘除法,最后计算加减法的顺序进行计算.5、【解析】【分析】设,则,从而得出关于、的二元一次方程组【详解】解:设,原方程组变为故答案为:【考点】本题考查用换元法使分式方程简便换元后再在方程两边乘最简公分母可以把分式方程转化为整式方程应注意换元后的字母系数三、解答题1、(1)10;(2)b【解析】【分析】(1)直接利用零指数幂的性质化简得出答案;(2)直接利用积的乘方运算法则化简,再利用单项式除单项式运算法则计算得出答案【详解】解:

    15、(1)(-3)2+(+3)0=9+1=10;(2)(-2a)3b3(6a3b2)=-8a3b36a3b2=b【考点】此题主要考查了零指数幂的性质以及积的乘方运算、单项式除单项式运算,正确掌握相关运算法则是解题关键2、a=1,-4或6时原方程无解【解析】【分析】分式方程去分母转化为整式方程,由分式方程无解确定出a的值即可【详解】由原方程得:2(x+2)+ax=3(x-2),整理得:(a-1)x=-10,(i)当a-1=0,即a=1时,原方程无解;(ii)当a-10,原方程有增根x=2,当x=2时,2(a-1)=-10,即a=-4;当x=-2时,-2(a-1)=-10,即a=6,即当a=1,-4或

    16、6时原方程无解【考点】此题考查分式方程的解,熟练掌握分式方程无解的条件是解题的关键3、(1)30人;(2)39天【解析】【分析】(1)设当前参加生产的工人有人,根据每人每小时完成的工作量不变列出关于的方程,求解即可;(2)设还需要生产天才能完成任务根据前面4天完成的工作量后面天完成的工作量760列出关于的方程,求解即可【详解】解:(1)设当前参加生产的工人有x人,依题意得:,解得:,经检验,是原方程的解,且符合题意答:当前参加生产的工人有30人(2)每人每小时的数量为(万剂)设还需要生产y天才能完成任务,依题意得:,解得:,(天)答:该厂共需要39天才能完成任务【考点】本题考查分式方程的应用和

    17、一元一次方程的应用,分析题意,找到合适的数量关系是解决问题的关键4、k=2【解析】【分析】首先根据分式方程的解法求出方程的解,然后根据增根求出k的值【详解】两边同时乘以(x2)可得:x=2(x2)+k, 解得:x=4k,方程有增根,x=2, 即4k=2,解得:k=2【考点】本题主要考查的是分式方程有增根的情况,属于基础题型解决这种问题时,首先我们将k看作已知数,求出方程的解,然后根据解为增根得出答案5、 (1)100米(2)90米【解析】【分析】(1)设甲施工队增加人员后每天修建灌溉水渠x米,原来每天修建米,根据工效问题公式:工作总量工作时间工作效率,列出关于x的一元一次方程,解方程即可得出答

    18、案;(2)设乙施工队原来每天修建灌溉水渠y米,技术更新后每天修建米,根据水渠总长1800米,完工时,两施工队修建长度相同,可知每队修建900米,再结合两队同时开工修建,直至同时完工,可得两队工作时间相同,列出关于y的分式方程,解方程即可得出答案(1)解:设甲施工队增加人员后每天修建灌溉水渠x米,原来每天修建米,则有解得甲施工队增加人员后每天修建灌溉水渠100米(2)水渠总长1800米,完工时,两施工队修建长度相同两队修建的长度都为18002900(米)乙施工队技术更新后,修建长度为900360540(米)解:设乙施工队原来每天修建灌溉水渠y米,技术更新后每天修建米,即1.2y米则有解得经检验,是原方程的解,符合题意乙施工队原来每天修建灌溉水渠90米【考点】本题考查一元一次方程和分式方程的实际应用,应注意分式方程要检验,读懂题意,正确设出未知数,并列出方程,是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年人教版八年级数学上册第十五章分式综合测评试题(含详细解析).docx
    链接地址:https://www.ketangku.com/wenku/file-636368.html
    相关资源 更多
  • 人教版五年级下册数学期末测试卷(巩固)word版.docx人教版五年级下册数学期末测试卷(巩固)word版.docx
  • 人教版五年级下册数学期末测试卷(巩固).docx人教版五年级下册数学期末测试卷(巩固).docx
  • 人教版五年级下册数学期末测试卷(实验班).docx人教版五年级下册数学期末测试卷(实验班).docx
  • 人教版五年级下册数学期末测试卷(实用)word版.docx人教版五年级下册数学期末测试卷(实用)word版.docx
  • 人教版五年级下册数学期末测试卷(实用).docx人教版五年级下册数学期末测试卷(实用).docx
  • 人教版五年级下册数学期末测试卷(完整版).docx人教版五年级下册数学期末测试卷(完整版).docx
  • 人教版五年级下册数学期末测试卷(夺分金卷).docx人教版五年级下册数学期末测试卷(夺分金卷).docx
  • 人教版五年级下册数学期末测试卷(夺冠)word版.docx人教版五年级下册数学期末测试卷(夺冠)word版.docx
  • 人教版五年级下册数学期末测试卷(夺冠).docx人教版五年级下册数学期末测试卷(夺冠).docx
  • 人教版五年级下册数学期末测试卷(夺冠系列).docx人教版五年级下册数学期末测试卷(夺冠系列).docx
  • 人教版五年级下册数学期末测试卷(基础题).docx人教版五年级下册数学期末测试卷(基础题).docx
  • 人教版五年级下册数学期末测试卷(培优a卷).docx人教版五年级下册数学期末测试卷(培优a卷).docx
  • 人教版五年级下册数学期末测试卷(含答案)word版.docx人教版五年级下册数学期末测试卷(含答案)word版.docx
  • 人教版五年级下册数学期末测试卷(含答案).docx人教版五年级下册数学期末测试卷(含答案).docx
  • 人教版五年级下册数学期末测试卷(名校卷)word版.docx人教版五年级下册数学期末测试卷(名校卷)word版.docx
  • 人教版五年级下册数学期末测试卷(名校卷).docx人教版五年级下册数学期末测试卷(名校卷).docx
  • 人教版五年级下册数学期末测试卷(名师系列)word版.docx人教版五年级下册数学期末测试卷(名师系列)word版.docx
  • 人教版五年级下册数学期末测试卷(名师系列).docx人教版五年级下册数学期末测试卷(名师系列).docx
  • 人教版五年级下册数学期末测试卷(名师推荐).docx人教版五年级下册数学期末测试卷(名师推荐).docx
  • 人教版五年级下册数学期末测试卷(各地真题)word版.docx人教版五年级下册数学期末测试卷(各地真题)word版.docx
  • 人教版五年级下册数学期末测试卷(各地真题).docx人教版五年级下册数学期末测试卷(各地真题).docx
  • 人教版五年级下册数学期末测试卷(原创题).docx人教版五年级下册数学期末测试卷(原创题).docx
  • 人教版五年级下册数学期末测试卷(历年真题)word版.docx人教版五年级下册数学期末测试卷(历年真题)word版.docx
  • 人教版五年级下册数学期末测试卷(历年真题).docx人教版五年级下册数学期末测试卷(历年真题).docx
  • 人教版五年级下册数学期末测试卷(典型题)word版.docx人教版五年级下册数学期末测试卷(典型题)word版.docx
  • 人教版五年级下册数学期末测试卷(典型题).docx人教版五年级下册数学期末测试卷(典型题).docx
  • 人教版五年级下册数学期末测试卷(典优)word版.docx人教版五年级下册数学期末测试卷(典优)word版.docx
  • 人教版五年级下册数学期末测试卷(典优).docx人教版五年级下册数学期末测试卷(典优).docx
  • 人教版五年级下册数学期末测试卷(全国通用)word版.docx人教版五年级下册数学期末测试卷(全国通用)word版.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1