2022年人教版九年级数学上册第二十四章圆同步训练试卷(解析版含答案).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年人教版 九年级 数学 上册 第二 十四 同步 训练 试卷 解析 答案
- 资源描述:
-
1、人教版九年级数学上册第二十四章圆同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、丁丁和当当用半径大小相同的圆形纸片分别剪成扇形(如图)做圆锥形的帽子,请你判断哪个小朋友做成的帽子更高一些()A丁丁
2、B当当C一样高D不确定2、如图,在ABC中,ACB90,ACBC,AB4cm,CD是中线,点E、F同时从点D出发,以相同的速度分别沿DC、DB方向移动,当点E到达点C时,运动停止,直线AE分别与CF、BC相交于G、H,则在点E、F移动过程中,点G移动路线的长度为()A2BC2D3、如图,已知是的两条切线,A,B为切点,线段交于点M给出下列四种说法:;四边形有外接圆;M是外接圆的圆心,其中正确说法的个数是()A1B2C3D44、如图,在ABC中,cosB,sinC,AC5,则ABC的面积是( )A B12C14D215、有一个圆的半径为5,则该圆的弦长不可能是()A1B4C10D116、如图,A
3、B是的直径,点B是弧CD的中点,AB交弦CD于E,且,则()A2B3C4D57、如图,AB是O的直径,C,D是O上位于AB异侧的两点下列四个角中,一定与ACD互余的角是()AADCBABDCBACDBAD8、如图,拱桥可以近似地看作直径为250m的圆弧,桥拱和路面之间用数根钢索垂直相连,其正下方的路面AB长度为150m,那么这些钢索中最长的一根的长度为()A50mB40mC30mD25m9、在O中按如下步骤作图:(1)作O的直径AD;(2)以点D为圆心,DO长为半径画弧,交O于B,C两点;(3)连接DB,DC,AB,AC,BC根据以上作图过程及所作图形,下列四个结论中错误的是()AABD90B
4、BADCBDCADBCDAC2CD10、如图,在中,AB=AC=5,点在上,且,点E是AB上的动点,连结,点,G分别是BC,DE的中点,连接,当AG=FG时,线段长为()ABCD4第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,边长相等的正五边形和正六边形拼接在一起,则ABC的度数为_2、已知的半径为,直线与相交,则圆心到直线距离的取值范围是_3、如图,在O中,则图中阴影部分的面积是_(结果保留)4、如图,四边形是的外切四边形,且,则四边形的周长为_5、如图,四边形是正方形,曲线是由一段段90度的弧组成的其中:的圆心为点A,半径为;的圆心为点B,半径为;的圆心为点
5、C,半径为;的圆心为点D,半径为;的圆心依次按点A,B,C,D循环若正方形的边长为1,则的长是_三、解答题(5小题,每小题10分,共计50分)1、已知四边形内接于O,垂足为E,垂足为F,交于点G,连接(1)求证:;(2)如图1,若,求O的半径;(3)如图2,连接,交于点H,若,试判断是否为定值,若是,求出该定值;若不是,说明理由2、已知,正方形ABCD中,M、N分别为AD边上的两点,连接BM、CN并延长交于一点H,连接AH,E为BM上一点,连接AE、CE,ECHMNH90(1)如图1,若E为BM的中点,且DM3AM,求线段AB的长(2)如图2,若点F为BE中点,点G为CF延长线上一点,且EG/
6、BC,CEGE,求证:(3)如图3,在(1)的条件下,点P为线段AD上一动点,连接BP,作CQBP于Q,将BCQ沿BC翻折得到BCl,点K、R分别为线段BC、Bl上两点,且BI3RI,BC4BK,连接CR、IK交于点T,连接BT,直接写出BCT面积的最大值3、如图,已知AB是O的直径,C,D是O上的点,OCBD,交AD于点E,连结BC(1)求证:AE=ED;(2)若AB=10,CBD=36,求的长4、如图,AB是O的直径,弦CDAB于点E,点PO上,1=C(1)求证:CBPD;(2)若ABC=55,求P的度数5、如图,BAC的平分线交ABC的外接圆于点D,ABC的平分线交AD于点E(1)求证:
7、DEDB;(2)若BAC90,BD4,求ABC外接圆的半径-参考答案-一、单选题1、B【解析】【分析】由图形可知,丁丁扇形的弧长大于当当扇形的弧长,根据弧长与圆锥底面圆的周长相等,可得丁丁剪成扇形做圆锥形的帽子的底面半径r大于当当剪成扇形做圆锥形的帽子的底面半径r,由扇形的半径相等,即母线长相等R,设圆锥底面圆半径为r,母线为R,圆锥的高为h,根据勾股定理由即,可得丁丁的h小于当当的h即可【详解】解:由图形可知,丁丁扇形的弧长大于当当扇形的弧长,根据弧长与圆锥底面圆的周长相等,丁丁剪成扇形做圆锥形的帽子的底面半径r大于当当剪成扇形做圆锥形的帽子的底面半径r,扇形的半径相等,即母线长相等R,设圆
8、锥底面圆半径为r,母线为R,圆锥的高为h,,根据勾股定理由即,丁丁的h小于当当的h,由勾股定理可得当当做成的圆锥形的帽子更高一些故选:B【考点】本题考查扇形作圆锥帽子的应用,利用圆锥的母线底面圆的半径,和圆锥的高三者之间关系,根据勾股定理确定出当当的帽子高是解题关键2、D【解析】【分析】【详解】解:如图,CACB,ACB90,ADDB,CDAB,ADECDF90,CDADDB,在ADE和CDF中,ADECDF(SAS),DAEDCF,AEDCEG,ADECGE90,A、C、G、D四点共圆,点G的运动轨迹为弧CD,AB4,ABAC,AC2,OAOC,DADC,OAOC,DOAC,DOC90,点G
9、的运动轨迹的长为故选:D3、C【解析】【分析】由切线长定理判断,结合等腰三角形的性质判断,利用切线的性质与直角三角形的斜边上的中线等于斜边的一半,判断,利用反证法判断【详解】如图, 是的两条切线, 故正确, 故正确, 是的两条切线, 取的中点,连接,则 所以:以为圆心,为半径作圆,则共圆,故正确, M是外接圆的圆心, 与题干提供的条件不符,故错误,综上:正确的说法是个,故选C【考点】本题考查的是切线长定理,三角形的外接圆,四边形的外接圆,掌握以上知识是解题的关键4、A【解析】【分析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积【详解】解:过点A作ADBC,
10、ABC中,cosB=,sinC=,AC=5,cosB=,B=45,sinC=,AD=3,CD=4,BD=3,则ABC的面积是:ADBC=3(3+4)=故选A【考点】此题主要考查了解直角三角形的知识,作出ADBC,进而得出相关线段的长度是解决问题的关键5、D【解析】【分析】根据圆的半径为5,可得到圆的最大弦长为10,即可求解【详解】半径为5,直径为10,最长弦长为10,则不可能是11故选:D【考点】本题主要考查了圆的基本性质,理解圆的直径是圆的最长的弦是解题的关键6、C【解析】【分析】是的直径,点是弧的中点,从而可知,然后利用勾股定理即可求出的长度【详解】解:设半径为,连接,是的直径,点是弧的中
11、点,由垂径定理可知:,且点是的中点,由勾股定理可知:,由勾股定理可知:,解得:,故选:C【考点】本题考查垂径定理,解题的关键是正确理解垂径定理以及勾股定理,本题属于中等题型7、D【解析】【分析】由圆周角定理得出ACBACD+BCD90,BCDBAD,得出ACD+BAD90,即可得出答案.【详解】解:连接BC,如图所示:AB是O的直径,ACBACD+BCD90,BCDBAD,ACD+BAD90,故选:D.【考点】此题考查了圆周角定理:同弧所对的圆周角相等,直径所对的圆周角是直角,正确掌握圆周角定理是解题的关键.8、D【解析】【分析】设圆弧的圆心为O,过O作OCAB于C,交于D,连接OA,先由垂径
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2018年秋人教版语文七年级上册习题课件:专题一字音与字形.ppt
