分享
分享赚钱 收藏 举报 版权申诉 / 24

类型2022年人教版八年级数学上册第十三章轴对称专项测试试题(解析版).docx

  • 上传人:a****
  • 文档编号:696490
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:24
  • 大小:519.99KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 年人教版 八年 级数 上册 第十三 轴对称 专项 测试 试题 解析
    资源描述:

    1、人教版八年级数学上册第十三章轴对称专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,是轴对称图形的是()ABCD2、如图,若是等边三角形,是的平分线,延长到,使,则()A7B8C9D10

    2、3、如图,的垂直平分线交于点,若,则的度数是()A25B20C30D154、如图,A30,C60,ABC 与ABC关于直线l对称,则B度数为()ABCD5、等腰三角形两边长为3,6,则第三边的长是()A3B6CD3或66、如图,已知AB=AC=BD,那么1与2之间的关系是( )A1=22B21+2=180C1+32=180D31-2=1807、如果点与关于轴对称,则,的值分别为()A,B,C,D,8、如图,在ABC中,AB20cm,AC12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当APQ是以PQ为

    3、底的等腰三角形时,运动的时间是()秒A2.5B3C3.5D49、如图,等边的顶点,规定把等边“先沿轴翻折,再向左平移1个单位”为一次变换,这样连续经过2021次变换后,顶点C的坐标为()ABCD10、如图是A,B,C三岛的平面图,C岛在A岛的北偏东35度方向,B岛在A岛的北偏东80度方向,C岛在B岛的北偏西55度方向,则A,B,C三岛组成一个( )A等腰直角三角形B等腰三角形C直角三角形D等边三角形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABC中,AB=AC,D、E分别在CA、BA的延长线上,连接BD、CE,且D+E=180,若BD=6,则CE的长为_2、

    4、如图,在ABC中,B=30,C=50,通过观察尺规作图的痕迹,DAE的度数是_3、如图,一束光沿方向,先后经过平面镜、反射后,沿方向射出,已知,则_4、内部有一点P,点P关于的对称点为M,点P关于的对称点为N,若,则的周长为_5、如图,过边长为16的等边ABC的边AB上的一点P,作PEAC于点E,点Q为BC延长线上一点,当PACQ时,连接PQ交AC边于点D,则DE的长为_三、解答题(5小题,每小题10分,共计50分)1、如图,是的角平分线,交于点E(1)求证:(2)当时,请判断与的大小关系,并说明理由2、如图,在RtABC中,ACB=90,A=40,ABC的外角CBD的平分线BE交AC的延长线

    5、于点E(1)求CBE的度数;(2)过点D作DFBE,交AC的延长线于点F,求F的度数3、如图,在中,点是中点,点为边上一点,连接,以为边在的左侧作等边三角形,连接(1)的形状为_;(2)随着点位置的变化,的度数是否变化?并结合图说明你的理由;(3)当点落在边上时,若,请直接写出的长4、如图,在ABC中,ABAC,D是BC边上的中点,连结AD,BE平分ABC交AC于点E,过点E作EFBC交AB于点F(1)若C36,求BAD的度数(2)求证:FBFE5、如图,AC,BD交于点O,(1)求证:;(2)若,求C的度数-参考答案-一、单选题1、D【解析】【分析】根据“如果一个图形沿一条直线折叠,直线两旁

    6、的部分能够互相重合,这个图形叫做轴对称图形”判断即可得【详解】解:根据题意,A、B、C选项中均不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;D选项能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:D【考点】本题主要考查轴对称图形,解题的关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴2、C【解析】【分析】根据等边三角形三线合一得到BD垂直平分CA,所以CD=,另有 ,从而求出BE的长度【详解】解:由于ABC是等边三角形,则其三边相等,BD也是

    7、AC的垂直平分线,即AB=BC=CA=6,AD=DC=3,已知CE=CD,则CE=3而BE=BC+CE,因此BE=6+3=9故答案选C【考点】本题考查了等边三角形性质,看到等边三角形应想到三条边相等,三线合一3、D【解析】【分析】根据等要三角形的性质得到ABC,再根据垂直平分线的性质求出ABD,从而可得结果【详解】解:AB=AC,C=ABC=65,A=180-652=50,MN垂直平分AB,AD=BD,A=ABD=50,DBC=ABC-ABD=15,故选D【考点】本题考查了等腰三角形的性质和垂直平分线的性质,解题的关键是掌握相应的性质定理4、C【解析】【分析】由已知条件,根据轴对称的性质可得C

    8、C30,利用三角形的内角和等于180可求答案【详解】ABC与ABC关于直线l对称,AA30,CC60;B18030-6090故选:C【考点】主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是1805、B【解析】【分析】题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形【详解】由等腰三角形的概念,得第三边的长可能为3或6,当第三边是3时,而3+3=6,所以应舍去;则第三边长为6故选B【考点】此题考查等腰三角形的性质和三角形的三边关系解题关键在于已知没有明确腰和底边的题目一定要想到两种情

    9、况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答6、D【解析】【分析】根据等腰三角形的性质和三角形的内角和定理可得B=18021=C,根据三角形的外角性质可得C=12,进一步即得答案【详解】解:AB=AC=BD,BAD=1,B=C,B=18021=C,C=12,18021=12,312=180故选:D【考点】本题考查了等腰三角形的性质、三角形的内角和定理和三角形的外角性质等知识,属于基本题型,熟练掌握上述知识是解题的关键7、A【解析】【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变即点P(x,y)关于y轴的对称点P的坐标是(-x,y),进而得出答案【详解】解:点P(

    10、-m,3)与点Q(-5,n)关于y轴对称,m=-5,n=3,故选:A【考点】此题主要考查了关于y轴对称点的性质,正确记忆关于坐标轴对称点的性质是解题关键8、D【解析】【分析】设运动时间为x秒时,APAQ,根据点P、Q的出发点及速度,即可得出关于t的一元一次方程,解之即可得出结论【详解】设运动的时间为x秒,在ABC中,AB20cm,AC12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当APQ是以PQ为底的等腰三角形时,APAQ,AP203x,AQ2x,即203x2x,解得x4故选:D【考点】此题主要考查学生对等腰三角形的性质这一知识点的理解和

    11、掌握,此题涉及到动点,有一定的拔高难度,属于中档题9、D【解析】【分析】先求出点C坐标,第一次变换,根据轴对称判断出点C变换后在x轴下方然后求出点C纵坐标,再根据平移的距离求出点C变换后的横坐标,最后写出第一次变换后点C坐标,同理可以求出第二次变换后点C坐标,以此类推可求出第n次变化后点C坐标【详解】ABC是等边三角形AB=3-1=2点C到x轴的距离为1+,横坐标为2C(2,)由题意可得:第1次变换后点C的坐标变为(2-1,),即(1,),第2次变换后点C的坐标变为(2-2,),即(0,)第3次变换后点C的坐标变为(2-3,),即(-1,)第n次变换后点C的坐标变为(2-n,)(n为奇数)或(

    12、2-n,)(n为偶数),连续经过2021次变换后,等边的顶点的坐标为(-2019,),故选:D【考点】本题考查了利用轴对称变换(即翻折)和平移的特点求解点的坐标,在求解过程中找到规律是关键10、A【解析】【分析】先根据方位角的定义分别可求出,再根据角的和差、平行线的性质可得,从而可得,然后根据三角形的内角和定理可得,最后根据等腰直角三角形的定义即可得【详解】由方位角的定义得:由题意得:由三角形的内角和定理得:是等腰直角三角形即A,B,C三岛组成一个等腰直角三角形故选:A【考点】本题考查了方位角的定义、平行线的性质、三角形的内角和定理、等腰直角三角形的定义等知识点,掌握理解方位角的概念是解题关键

    13、二、填空题1、6【解析】【分析】在AD上截取AF=AE,连接BF,易得ABFACE,根据全等三角形的性质可得BFA=E,CE=BF,则有D=DFB,然后根据等腰三角形的性质可求解【详解】解:在AD上截取AF=AE,连接BF,如图所示:AB=AC,FAB=EAC,BF=EC,BFA=E,D+E=180,BFA+DFB=180,DFB=D,BF=BD, BD=6,2、35【解析】【分析】由线段垂直平分线的性质和等腰三角形的性质求得BAD=30,结合三角形内角和定理求出CAD,根据角平分线的定义即可求出DAE的度数【详解】解:DF垂直平分线段AB,DA=DB,BAD=B=30,B=30,C=50,B

    14、AC=180-B-C=180-30-50=100,CAD=BAC-BAD=100-30=70,AE平分CAD,DAE=CAD=70=35,故答案为:35【考点】本题考查作图-基本作图,三角形内角和定理等知识,解题的关键是读懂图象信息,熟练掌握线段垂直平分线和角平分线的作法3、40#40度【解析】【分析】根据入射角等于反射角,可得,根据三角形内角和定理求得,进而即可求解【详解】解:依题意,故答案为:40【考点】本题考查了轴对称的性质,三角形内角和定理的应用,掌握轴对称的性质是解题的关键4、15【解析】【分析】根据轴对称的性质可证MON=2AOB=60;再利用OM=ON=OP,即可求出的周长【详解

    15、】解:根据题意可画出下图,OA垂直平分PM,OB垂直平分PNMOA=AOP,NOB=BOP;OM=OP=ON=5cmMON=2AOB=60为等边三角形。MON的周长=35=15故答案为:15【考点】此题考查了轴对称的性质及相关图形的周长计算,根据轴对称的性质得出MON=2AOB=60是解题关键5、8【解析】【分析】根据题意,作出合适的辅助线,然后根据全等三角形的判定和性质可以求得DE的长,本题得以解决【详解】解:作QFAC,交AC的延长线于点F,则QFC=90,ABC是等边三角形,PEAC于点E,A=ACB=60,PEA=90,PEA=QFC,ACB=QCF,A=QCF,在PEA和QFC中,P

    16、EAQFC(AAS),AE=CF,PE=QF,AC=AE+EC=16,EF=CF+EC=16,PED=90,QFD=90,PED=QFD,在PED和QFD中,PEDQFD(AAS),ED=FD,ED+FD=EF=16,DE=8,故答案为:8【考点】本题考查了全等三角形的判定与性质、等边三角形的性质,解答本题的关键是明确题意,利用等三角形的判定与性质和数形结合的思想解答三、解答题1、 (1)见解析(2)相等,见解析【解析】【分析】(1)利用角平分线的定义和平行线的性质可得结论;(2)利用平行线的性质可得,则AD=AE,从而有CD=BE,由(1)得,可知BE=DE,等量代换即可(1)证明:是的角平

    17、分线,(2)理由如下:,即由(1)得,【考点】本题主要考查了平行线的性质,等腰三角形的判定与性质,角平分线的定义等知识,熟练掌握平行与角平分线可推出等腰三角形是解题的关键2、 (1) 65;(2) 25【解析】【分析】(1)先根据直角三角形两锐角互余求出ABC=90A=50,由邻补角定义得出CBD=130再根据角平分线定义即可求出CBE=CBD=65;(2)先根据直角三角形两锐角互余的性质得出CEB=9065=25,再根据平行线的性质即可求出F=CEB=25【详解】(1)在RtABC中,ACB=90,A=40,ABC=90A=50,CBD=130BE是CBD的平分线,CBE=CBD=65;(2

    18、)ACB=90,CBE=65,CEB=9065=25DFBE,F=CEB=25【考点】本题考查了三角形内角和定理,直角三角形两锐角互余的性质,平行线的性质,邻补角定义,角平分线定义掌握各定义与性质是解题的关键3、(1)等边三角形;(2)的度数不变,理由见解析;(3)2【解析】【分析】(1)由、,可得出、,结合点是中点,可得出,进而即可得出为等边三角形;(2)由(1)可得出,根据可得出,再结合、即可得出,根据全等三角形的性质即可得出,即的度数不变;(3)易证为等腰三角形,由等腰三角形及等边三角形的性质可得出,进而可得出【详解】解:(1)在中,点是中点,为等边三角形故答案为等边三角形(2)的度数不

    19、变,理由如下:,点是中点,为等边三角形,又为等边三角形,在和中,即的度数不变(3)为等边三角形,为等腰三角形,【考点】本题考查了等边三角形的判定与性质、全等三角形的判定与性质、含度角的直角三角形勾股定理以及等腰三角形的性质,解题的关键是:(1)找出、;(2)利用全等三角形的判定定理找出;(3)根据等腰三角形及等边三角形的性质找出4、(1)54,(2)见解析【解析】【分析】(1)利用等腰三角形的三线合一的性质证明ADB90,再利用等腰三角形的性质求出ABC即可解决问题(2)利用角平分线性质和平行线性质证明FBEFEB即可【详解】解:(1)ABAC,CABC,C36,ABC36,D为BC的中点,ADBC,BAD90ABC903654(2)BE平分ABC,ABEEBC,又EFBC,EBCBEF,EBFFEB,BFEF【考点】本题考查等腰三角形的性质,平行线的性质等知识,解题的关键是熟练掌握等腰三角形的性质和判定,熟练运用平行线进行角的推导和证明5、 (1)见解析(2)【解析】【分析】(1)利用AAS证明ABCBAD; (2)利用等腰三角形的性质可判断C=ABC,因为,即可求出C的度数(1)证明:又,(2), 【考点】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具,在判定三角形全等时,关键是选择恰当的判定条件

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年人教版八年级数学上册第十三章轴对称专项测试试题(解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-696490.html
    相关资源 更多
  • 专题21 尺规作图(精讲精练)(原卷版).docx专题21 尺规作图(精讲精练)(原卷版).docx
  • 专题21 对称、平移、旋转 安徽省2023年中考数学一轮复习专题训练.docx专题21 对称、平移、旋转 安徽省2023年中考数学一轮复习专题训练.docx
  • 专题21 对称、平移、旋转 2023年中考数学一轮复习专题训练(北京专用).docx专题21 对称、平移、旋转 2023年中考数学一轮复习专题训练(北京专用).docx
  • 专题21 圆中的相似问题(解析版).docx专题21 圆中的相似问题(解析版).docx
  • 专题21 圆中的相似问题(原卷版).docx专题21 圆中的相似问题(原卷版).docx
  • 专题21 图形的相似(共29题)(教师版)(01期)-2023年中考数学真题分类训练.docx专题21 图形的相似(共29题)(教师版)(01期)-2023年中考数学真题分类训练.docx
  • 专题21 图形的相似(共29题)(学生版)(01期)-2023年中考数学真题分类训练.docx专题21 图形的相似(共29题)(学生版)(01期)-2023年中考数学真题分类训练.docx
  • 专题21 图形的相似(共20道)(教师版)(02期)-2023年中考数学真题分类训练.docx专题21 图形的相似(共20道)(教师版)(02期)-2023年中考数学真题分类训练.docx
  • 专题21 图形的相似(共20道)(学生版)(02期)-2023年中考数学真题分类训练.docx专题21 图形的相似(共20道)(学生版)(02期)-2023年中考数学真题分类训练.docx
  • 专题21 哲理感悟-备战2023年中考英语阅读理解热点话题分类训练(中考真题 名校最新模拟题).docx专题21 哲理感悟-备战2023年中考英语阅读理解热点话题分类训练(中考真题 名校最新模拟题).docx
  • 专题21 反比例函数-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(解析版).docx专题21 反比例函数-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(解析版).docx
  • 专题21 反比例函数-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(原卷版).docx专题21 反比例函数-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(原卷版).docx
  • 专题21 利用导数解决函数的恒成立问题(原卷版).docx专题21 利用导数解决函数的恒成立问题(原卷版).docx
  • 专题21 初升高检测卷(一)【练习】-2022年初升高英语无忧衔接(通用版).docx专题21 初升高检测卷(一)【练习】-2022年初升高英语无忧衔接(通用版).docx
  • 专题21 元素周期律-【题高分】2022-2023学年高一化学同步教学专题讲义(人教版2019必修第一册).docx专题21 元素周期律-【题高分】2022-2023学年高一化学同步教学专题讲义(人教版2019必修第一册).docx
  • 专题21 信息的传递、能源与可持续发展(原卷版)-备战2023年中考物理精选考点专练(知识清单+基础+拔高) .docx专题21 信息的传递、能源与可持续发展(原卷版)-备战2023年中考物理精选考点专练(知识清单+基础+拔高) .docx
  • 专题21 传统发酵技术及应用(解析版).docx专题21 传统发酵技术及应用(解析版).docx
  • 专题21 传统发酵技术及应用(原卷版).docx专题21 传统发酵技术及应用(原卷版).docx
  • 专题21 从不同的方向看_答案.docx专题21 从不同的方向看_答案.docx
  • 专题21 二次函数与等腰三角形存在问题-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版).docx专题21 二次函数与等腰三角形存在问题-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版).docx
  • 专题21 二次函数与等腰三角形存在问题-2022年中考数学之二次函数重点题型专题(全国通用版)(原卷版).docx专题21 二次函数与等腰三角形存在问题-2022年中考数学之二次函数重点题型专题(全国通用版)(原卷版).docx
  • 专题21 中国共产党领导人民站起来、富起来、强起来(解析版).docx专题21 中国共产党领导人民站起来、富起来、强起来(解析版).docx
  • 专题21 中国共产党领导人民站起来、富起来、强起来(原卷版).docx专题21 中国共产党领导人民站起来、富起来、强起来(原卷版).docx
  • 专题21 与圆相关的压轴题-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版).docx专题21 与圆相关的压轴题-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版).docx
  • 专题21 与二次函数有关的压轴题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版).docx专题21 与二次函数有关的压轴题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版).docx
  • 专题21 不等式选讲(教师版).docx专题21 不等式选讲(教师版).docx
  • 专题21 不等式选讲(学生版).docx专题21 不等式选讲(学生版).docx
  • 专题21 一线三等角模型证全等(解析版).docx专题21 一线三等角模型证全等(解析版).docx
  • 专题21 一次函数(题型归纳)(解析版).docx专题21 一次函数(题型归纳)(解析版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1