分享
分享赚钱 收藏 举报 版权申诉 / 6

类型2022年高考数学一轮复习 考点规范练43 圆的方程(含解析)新人教A版.docx

  • 上传人:a****
  • 文档编号:717142
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:6
  • 大小:67.48KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年高考数学一轮复习 考点规范练43 圆的方程含解析新人教A版 2022 年高 数学 一轮 复习 考点 规范 43 方程 解析 新人
    资源描述:

    1、考点规范练43圆的方程基础巩固1.圆心为(1,1)且过原点的圆的标准方程是()A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2答案:D解析:由题意可得圆的半径r=(1-0)2+(1-0)2=2,则圆的标准方程为(x-1)2+(y-1)2=2.2.已知实数x,y满足(x+5)2+(y-12)2=122,则x2+y2的最小值为()A.2B.1C.3D.2答案:B解析:设P(x,y),则点P在圆(x+5)2+(y-12)2=122上,则圆心C(-5,12),半径r=12,x2+y2=(x-0)2+(y-0)22=

    2、|OP|2,又|OP|的最小值是|OC|-r=13-12=1,所以x2+y2的最小值为1.3.在平面内,A,B是两个定点,C是动点.若ACBC=1,则点C的轨迹为()A.圆B.椭圆C.抛物线D.直线答案:A解析:以AB所在直线为x轴,线段AB的垂直平分线为y轴,建立平面直角坐标系.设A(-a,0),则B(a,0),C(x,y),则AC=(x+a,y),BC=(x-a,y),由ACBC=1,得(x+a)(x-a)+y2=1,整理得x2+y2=a2+1,即点C的轨迹为圆.故选A.4.点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是()A.(x-2)2+(y+1)2=1B.(x-2)

    3、2+(y+1)2=4C.(x+4)2+(y-2)2=4D.(x+2)2+(y-1)2=1答案:A解析:设圆上任一点为Q(x0,y0),PQ的中点为M(x,y),则x=4+x02,y=-2+y02,解得x0=2x-4,y0=2y+2.因为点Q在圆x2+y2=4上,所以x02+y02=4,即(2x-4)2+(2y+2)2=4,化简得(x-2)2+(y+1)2=1.5.已知直线l:x+my+4=0,若曲线x2+y2+2x-6y+1=0上存在两点P,Q关于直线l对称,则m的值为()A.2B.-2C.1D.-1答案:D解析:曲线x2+y2+2x-6y+1=0是圆(x+1)2+(y-3)2=9,若圆(x+

    4、1)2+(y-3)2=9上存在两点P,Q关于直线l对称,则直线l:x+my+4=0过圆心(-1,3),所以-1+3m+4=0,解得m=-1,故选D.6.如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)圆C的标准方程为;(2)圆C在点B处的切线在x轴上的截距为.答案:(1)(x-1)2+(y-2)2=2(2)-1-2解析:(1)由题意可设圆心C坐标为(1,b),取AB中点为P,连接CP,CB,则BPC为直角三角形,得|BC|=r=2=b,故圆C的标准方程为(x-1)2+(y-2)2=2.(2)由(1)得,C(1,2),B(0,2+1),

    5、则kBC=-1.圆C在点B处的切线方程为y=x+2+1,令y=0,得x=-2-1,即切线在x轴上的截距为-1-2.7.当方程x2+y2+kx+2y+k2=0k243所表示的圆的面积取最大值时,直线y=(k-1)x+2的倾斜角=.答案:34解析:由题意知,圆的半径r=12k2+4-4k2=124-3k21k20),则|2a|5=455,即a=2.又点M(0,5)在圆C上,则圆C的半径r=22+5=3.故圆C的方程为(x-2)2+y2=9.9.已知圆C的圆心在直线y=-4x上,且与直线l:x+y-1=0相切于点P(3,-2),求圆C的方程.解:(方法一)如图,设圆心C(x0,-4x0),依题意得4

    6、x0-23-x0=1,则x0=1,即圆心C的坐标为(1,-4),半径r=22,故圆C的方程为(x-1)2+(y+4)2=8.(方法二)设所求圆C的方程为(x-x0)2+(y-y0)2=r2,根据已知条件得y0=-4x0,(3-x0)2+(-2-y0)2=r2,|x0+y0-1|2=r,解得x0=1,y0=-4,r=22.因此所求圆C的方程为(x-1)2+(y+4)2=8.10.在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为22,在y轴上截得线段长为23.(1)求圆心P的轨迹方程;(2)若点P到直线y=x的距离为22,求圆P的方程.解:(1)设P(x,y),圆P的半径为r.由题设y2+2

    7、=r2,x2+3=r2,从而y2+2=x2+3.故P点的轨迹方程为y2-x2=1.(2)设P(x0,y0),由已知得|x0-y0|2=22.又P在双曲线y2-x2=1上,从而得|x0-y0|=1,y02-x02=1.由x0-y0=1,y02-x02=1,得x0=0,y0=-1.此时,圆P的半径r=3.由x0-y0=-1,y02-x02=1,得x0=0,y0=1.此时,圆P的半径r=3.故圆P的方程为x2+(y+1)2=3或x2+(y-1)2=3.能力提升11.阿波罗尼斯证明过这样一个命题:平面内到两定点距离之比为常数k(k0,且k1)的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A,B

    8、间的距离为2,动点P与A,B距离之比为2,当P,A,B不共线时,PAB面积的最大值是()A.22B.2C.223D.23答案:A解析:如图,以经过A,B的直线为x轴,线段AB的垂直平分线为y轴,建立直角坐标系,则A(-1,0),B(1,0),设P(x,y),|PA|PB|=2,(x+1)2+y2(x-1)2+y2=2,两边平方并整理得x2+y2-6x+1=0(x-3)2+y2=8,ymax=22,PAB面积的最大值是12222=22,故选A.12.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x-y-3=0的距离为()A.55B.255C.355D.455答案:B解析:由题意可知,圆心在

    9、第一象限.设圆心为(a,a)(a0),则(2-a)2+(1-a)2=a2,解得a=1或a=5.当a=1时,圆心为(1,1),此时圆心到直线2x-y-3=0的距离为d1=|2-1-3|5=255.当a=5时,圆心为(5,5),此时圆心到直线2x-y-3=0的距离为d2=|25-5-3|5=255.综上,圆心到直线2x-y-3=0的距离为255.故选B.13.已知圆M与y轴相切,圆心在直线y=12x上,并且在x轴上截得的弦长为23,则圆M的标准方程为.答案:(x-2)2+(y-1)2=4或(x+2)2+(y+1)2=4解析:设圆M的标准方程为(x-a)2+(y-b)2=r2,由题意可得12a-b=

    10、0,|a|=r,b2+3=r2,解得a=2,b=1,r=2或a=-2,b=-1,r=2,所以圆M的标准方程为(x-2)2+(y-1)2=4或(x+2)2+(y+1)2=4.14.在以O为原点的平面直角坐标系中,点A(4,-3)为OAB的直角顶点,已知|AB|=2|OA|,且点B的纵坐标大于0.(1)求AB的坐标;(2)求圆x2-6x+y2+2y=0关于直线OB对称的圆的方程.解:(1)设AB=(x,y),由|AB|=2|OA|,ABOA=0,得x2+y2=100,4x-3y=0,解得x=6,y=8或x=-6,y=-8.若AB=(-6,-8),则yB=-11与yB0矛盾.x=-6,y=-8舍去,

    11、即AB=(6,8).(2)圆x2-6x+y2+2y=0,即(x-3)2+(y+1)2=(10)2,其圆心为C(3,-1),半径r=10.OB=OA+AB=(4,-3)+(6,8)=(10,5),直线OB的方程为y=12x.设圆心C(3,-1)关于直线y=12x的对称点的坐标为(a,b),则b+1a-3=-2,b-12=12a+32,解得a=1,b=3,故所求的圆的方程为(x-1)2+(y-3)2=10.高考预测15.已知平面区域x0,y0,x+2y-40恰好被面积最小的圆C:(x-a)2+(y-b)2=r2及其内部所覆盖,则圆C的方程为.答案:(x-2)2+(y-1)2=5解析:由题意知,此平面区域表示的是以O(0,0),P(4,0),Q(0,2)所构成的三角形及其内部,所以覆盖它且面积最小的圆是其外接圆.因为OPQ为直角三角形,所以圆心为斜边PQ的中点(2,1),半径r=|PQ|2=5,所以圆C的方程为(x-2)2+(y-1)2=5.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年高考数学一轮复习 考点规范练43 圆的方程(含解析)新人教A版.docx
    链接地址:https://www.ketangku.com/wenku/file-717142.html
    相关资源 更多
  • 专题07 冠词(原卷版).docx专题07 冠词(原卷版).docx
  • 专题07 写作(原卷版).docx专题07 写作(原卷版).docx
  • 专题07 写作 -2023-2024学年四年级英语上册期中专项复习(人教PEP版).docx专题07 写作 -2023-2024学年四年级英语上册期中专项复习(人教PEP版).docx
  • 专题07 全面依法治国(讲义)(解析版).docx专题07 全面依法治国(讲义)(解析版).docx
  • 专题07 全面依法治国(讲义)(原卷版).docx专题07 全面依法治国(讲义)(原卷版).docx
  • 专题07 全等三角形旋转、一线三等角模型(重点突围)(解析版).docx专题07 全等三角形旋转、一线三等角模型(重点突围)(解析版).docx
  • 专题07 全等三角形旋转、一线三等角模型(重点突围)(原卷版).docx专题07 全等三角形旋转、一线三等角模型(重点突围)(原卷版).docx
  • 专题07 全等三角形中的倍长中线模型(解析版).docx专题07 全等三角形中的倍长中线模型(解析版).docx
  • 专题07 全等三角形中的倍长中线模型(原卷版).docx专题07 全等三角形中的倍长中线模型(原卷版).docx
  • 专题07 倍半角模型(知识精讲)-冲刺2021年中考几何专项复习.docx专题07 倍半角模型(知识精讲)-冲刺2021年中考几何专项复习.docx
  • 专题07 倍半角模型巩固练习(提优)-冲刺2021年中考几何专项复习(解析版).docx专题07 倍半角模型巩固练习(提优)-冲刺2021年中考几何专项复习(解析版).docx
  • 专题07 倍半角模型巩固练习(提优)-冲刺2021年中考几何专项复习(原卷版).docx专题07 倍半角模型巩固练习(提优)-冲刺2021年中考几何专项复习(原卷版).docx
  • 专题07 倍半角模型巩固练习(基础)-冲刺2021年中考几何专项复习(解析版).docx专题07 倍半角模型巩固练习(基础)-冲刺2021年中考几何专项复习(解析版).docx
  • 专题07 伴性遗传与人类遗传病(解析版).docx专题07 伴性遗传与人类遗传病(解析版).docx
  • 专题07 伴性遗传与人类遗传病(原卷版).docx专题07 伴性遗传与人类遗传病(原卷版).docx
  • 专题07 传送带模型-2022-2023学年高中物理同步练习分类专题教案(人教版2019必修第一册).docx专题07 传送带模型-2022-2023学年高中物理同步练习分类专题教案(人教版2019必修第一册).docx
  • 专题07 仿用、变化句式(导学案)-2023年新高考一轮复习讲堂之语言文字运用.docx专题07 仿用、变化句式(导学案)-2023年新高考一轮复习讲堂之语言文字运用.docx
  • 专题07 任务型阅读(回答问题)12篇(名校模拟 地区真题)-冲刺2023年中考英语必考题型终极预测(重庆专用).docx专题07 任务型阅读(回答问题)12篇(名校模拟 地区真题)-冲刺2023年中考英语必考题型终极预测(重庆专用).docx
  • 专题07 代词和限定词【知识梳理】-【口袋书】2024年中考英语一轮复习知识清单(全国通用)(解析版).docx专题07 代词和限定词【知识梳理】-【口袋书】2024年中考英语一轮复习知识清单(全国通用)(解析版).docx
  • 专题07 代词和限定词【知识梳理】-【口袋书】2024年中考英语一轮复习知识清单(全国通用)(原卷版).docx专题07 代词和限定词【知识梳理】-【口袋书】2024年中考英语一轮复习知识清单(全国通用)(原卷版).docx
  • 专题07 介词-2023年高考英语冲刺复习考点通关大全.docx专题07 介词-2023年高考英语冲刺复习考点通关大全.docx
  • 专题07 人口专题(讲义)-【高频考点解密】2023年高考地理二轮专题复习课件 讲义 分层训练(浙江专用)(原卷版).docx专题07 人口专题(讲义)-【高频考点解密】2023年高考地理二轮专题复习课件 讲义 分层训练(浙江专用)(原卷版).docx
  • 专题07 人口专题(分层训练)-【高频考点解密】2023年高考地理二轮复习课件 讲义 分层训练(浙江专用)(解析版).docx专题07 人口专题(分层训练)-【高频考点解密】2023年高考地理二轮复习课件 讲义 分层训练(浙江专用)(解析版).docx
  • 专题07 二项式定理【艺体生专供选择填空抢分专题】备战2024年高考高频考点题型精讲 精练(新高考通用)-解析版.docx专题07 二项式定理【艺体生专供选择填空抢分专题】备战2024年高考高频考点题型精讲 精练(新高考通用)-解析版.docx
  • 专题07 二次方程(解析版).docx专题07 二次方程(解析版).docx
  • 专题07 二次方程(原卷版).docx专题07 二次方程(原卷版).docx
  • 专题07 二次函数的综合(中考数学特色专题训练卷)(解析版).docx专题07 二次函数的综合(中考数学特色专题训练卷)(解析版).docx
  • 专题07 二次函数的综合(中考数学特色专题训练卷)(原卷版).docx专题07 二次函数的综合(中考数学特色专题训练卷)(原卷版).docx
  • 专题07 二次函数与直角三角形有关问题(专项训练)(解析版).docx专题07 二次函数与直角三角形有关问题(专项训练)(解析版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1