分享
分享赚钱 收藏 举报 版权申诉 / 10

类型2022年高考数学必刷压轴题 专题23 极化恒等式(含解析).docx

  • 上传人:a****
  • 文档编号:717537
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:10
  • 大小:346.35KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年高考数学必刷压轴题 专题23 极化恒等式含解析 2022 年高 数学 压轴 专题 23 极化 恒等式 解析
    资源描述:

    1、专题23 极化恒等式【方法点拨】极化恒等式:.说明:(1)极化恒等式的几何意义是:设点是ABC边的中点,则,即:向量的数量积可转化为中线长与半底边长的平方差(2)具有三角几何背景的数学问题利用极化恒等式考虑尤为简单,让“秒杀”向量数量积问题成为一种可能,此恒等式的精妙之处在于建立向量与几何长度(数量)之间的桥梁,实现向量与几何、代数的巧妙结合.(3)遇到共起点的两向量的数量积问题,常取第三边的中点,从而运用极化恒等式加以解决.【典型例题】例1 如图,在中,是的中点,是上两个三等分点,则的值是 【答案】【解析】设,由极化恒等式得,解之得可得,因此,因此21*cnjy*co点评: 紧紧把握极化恒等

    2、式使用条件,三次使用极化恒等式求解.例2 已知是边长为2的等边三角形,是平面内一点,则的最小值为 【答案】【分析】本题的难点在于如何将“二合一”?注意到两向量共起点且其系数和为3,可利用三点共线的方法将其“二合一”,然后使用极化恒等式.【解析】设,则,在上所以如图,取中点为,由极化恒等式得在,由余弦定理得所以当,即为中点时,所以的最小值,此时为中点.例3 如图所示,矩形ABCD的边AB=4,AD=2,以点C为圆心,CB为半径的圆与CD交于点E,若点P是圆弧(含端点B、E)上的一点,则的取值范围是 .【答案】【分析】取AB的中点设为O,则,然后利用平几知识确定PO的取值范围,代入即可.【解析】取

    3、AB的中点设为O,则,当O、P、C共线时, PO取得最小值为;当P 与B(或E)重合时,PO取得最大值为PO=2,所以的取值范围是.例4 半径为2的圆O上有三点A,B,C,满足,点是圆内一点,则的取值范围是( )A. B. C. D. 【答案】A【分析】直接两次使用极化恒等式即可.【解析】由得在平行四边形中,故易知四边形是菱形,且设四边形对角线的交点为E由极化恒等式得所以因为是圆内一点,所以所以,即,选A.例5 在ABC中,AC2BC4,ACB为钝角,M,N是边AB上的两个动点,且MN1,若的最小值为,则cosACB 【答案】【分析】取MN的中点P,由极化恒等式将“的最小值为”转化为AB边上的

    4、高CH=1,然后利用两角差的的余弦公式求解.【解析】取MN的中点P,则由极化恒等式得的最小值为 由平几知识知:当CPAB时,CP最小.如图,作CHAB,H为垂足,则CH=1又AC2BC4,所以B30o,sinA=所以cosACBcos(150o A)=.H例6 已知直角三角形ABC中,AB=2,AC=4,点P在以A为圆心且与边BC相切的圆上,则的最大值为( )A B C D【答案】D【解析】设中点为,则,又因为,所以,故选:D.【巩固练习】1. 如图,在平面四边形ABCD中,O为BD的中点,且OA3,OC5.若7,则_.2矩形中,为矩形所在平面内一点,,矩形对角线,则值为 .3.若平面向量a,

    5、b满足|2ab|3,则ab的最小值为_.4.已知平面向量a,b,e满足|e|1,ae1,be2,|ab|2,那么ab的最大值为_5.在中,已知,则面积的最大值是 6.已知单位向量,满足,则的值为( )ABCD17. 已知,且向量与的夹角为120,又,则的取值范围为( )ABCD8.已知平面向量满足,那么的最小值为_9.已知锐角的外接圆的半径为1, ,则的取值范围为_10.在中,若是所在平面内的一点,且,则的最大值为_.11.已知点是边长为的正三角形内切圆上的一点,则的取值范围为_.12.已知正方形ABCD的边长为1,中心为O,直线l经过中心O,交AB于点M,交CD于点N,P为平面上一点,若2(

    6、1),则的最小值为_.13.设点P为正三角形ABC的边BC上的一个动点,当取得最小值时,sinPAC的值为_14.在平面直角坐标系xOy中,点A,B分别在x轴,y轴正半轴上移动,AB2,若点P满足2,则OP的取值范围为_15.在ABC中,E,F分别是线段AB,AC的中点,点P在直线EF上,若ABC的面积为2,则2的最小值是_16.在半径为1的扇形AOB中,若AOB60,C为弧AB上的动点,AB与OC交于点P,则的最小值是_【答案与提示】1.【答案】9【提示】两次使用极化恒等式,由得,.2.【答案】【提示】设矩形的对角线交点为O,由,得,.3.【答案】【解析】根据极化恒等式得:,故,所以的最小值

    7、为4.【答案】54【提示】 由ae1,be2得: ae be3,即(ab)e3,|ab|cosq3ab=14|ab|2|ab|2545.【答案】【提示】取BC的中点为D,则,所以因为BC边上的高线长不大于中线长,当中线就是高线时,面积最大,故面积的最大值6.【答案】A【解析】,如图,设中点为,则,且,三点共线,为等腰三角形,.故选:A.7. 【答案】C【解析】连结,则设的中点为,由,易知,所以故,故选:C8.【答案】【解析】由,得,即 又(其中为向量与的夹角) 所以 所以.9.【答案】10.【答案】【提示】方法同上.11.【答案】12.【答案】13.【答案】14.【答案】15.【答案】16.【解析】如图,取OB的中点D,连接PD,则PD2OD2PD2,即求PD的最小值由图可知,当PDOB时,PDmin,则的最小值是.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年高考数学必刷压轴题 专题23 极化恒等式(含解析).docx
    链接地址:https://www.ketangku.com/wenku/file-717537.html
    相关资源 更多
  • 专题提升Ⅳ 带电粒子在组合场中的运动(解析版).docx专题提升Ⅳ 带电粒子在组合场中的运动(解析版).docx
  • 专题提升Ⅳ 带电粒子在组合场中的运动(原卷版).docx专题提升Ⅳ 带电粒子在组合场中的运动(原卷版).docx
  • 专题提升Ⅲ 带电粒子在有界匀强磁场中的运动(解析版).docx专题提升Ⅲ 带电粒子在有界匀强磁场中的运动(解析版).docx
  • 专题提升08 传染病和免疫.docx专题提升08 传染病和免疫.docx
  • 专题提升07 生物进化.docx专题提升07 生物进化.docx
  • 专题提升05 生物的生殖和发育.docx专题提升05 生物的生殖和发育.docx
  • 专题提升03  绿色植物.docx专题提升03  绿色植物.docx
  • 专题提升01 生态系统.docx专题提升01 生态系统.docx
  • 专题提升(一) 古代中国的政治制度(word教参)-2023高考历史(专题史)一轮复习【优化指导】高中总复习·第1轮(全国版).docx专题提升(一) 古代中国的政治制度(word教参)-2023高考历史(专题史)一轮复习【优化指导】高中总复习·第1轮(全国版).docx
  • 专题提升 解直角三角形的实际应用(30题)(解析版).docx专题提升 解直角三角形的实际应用(30题)(解析版).docx
  • 专题提升 解直角三角形的实际应用(30题)(原卷版).docx专题提升 解直角三角形的实际应用(30题)(原卷版).docx
  • 专题提升 相似三角形的判定与性质(30题)(解析版).docx专题提升 相似三角形的判定与性质(30题)(解析版).docx
  • 专题提升 相似三角形的判定与性质(30题)(原卷版).docx专题提升 相似三角形的判定与性质(30题)(原卷版).docx
  • 专题提升 实际问题与反比例函数及其综合应用(30题)(原卷版).docx专题提升 实际问题与反比例函数及其综合应用(30题)(原卷版).docx
  • 专题技巧二 动量守恒与能量守恒综合问题-2021-2022学年高二物理精讲与精练高分突破考点专题系列(人教版2019选择性必修第一册).docx专题技巧二 动量守恒与能量守恒综合问题-2021-2022学年高二物理精讲与精练高分突破考点专题系列(人教版2019选择性必修第一册).docx
  • 专题归类复习四 时态.docx专题归类复习四 时态.docx
  • 专题归类复习二 宾语从句.docx专题归类复习二 宾语从句.docx
  • 专题归类复习三 定语从句.docx专题归类复习三 定语从句.docx
  • 专题归类复习一 连词与并列句、状语从句.docx专题归类复习一 连词与并列句、状语从句.docx
  • 专题强化训练(六)基本不等式求最值-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx专题强化训练(六)基本不等式求最值-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx
  • 专题强化训练(五)函数应用问题-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx专题强化训练(五)函数应用问题-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx
  • 专题强化训练(二)分类讨论思想-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx专题强化训练(二)分类讨论思想-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx
  • 专题强化训练(九)图像变换及应用-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx专题强化训练(九)图像变换及应用-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx
  • 专题强化训练(三)复合函数问题-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx专题强化训练(三)复合函数问题-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx
  • 专题强化训练(七)三角函数的化简-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx专题强化训练(七)三角函数的化简-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx
  • 专题强化训练(一)二次函数在给定区间上最值问题-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx专题强化训练(一)二次函数在给定区间上最值问题-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx
  • 专题强化训练二 解分式方程的和实际应用问题-2022-2023学年八年级数学上册《考点•题型•技巧》精讲与精练高分突破(人教版).docx专题强化训练二 解分式方程的和实际应用问题-2022-2023学年八年级数学上册《考点•题型•技巧》精讲与精练高分突破(人教版).docx
  • 专题强化训练二 等比数列性质和求和常考重难点强化精选必刷题-2022-2023学年高二数学《考点•题型 •技巧》精讲与精练高分突破系列(人教A版2019选择性必修第二册).docx专题强化训练二 等比数列性质和求和常考重难点强化精选必刷题-2022-2023学年高二数学《考点•题型 •技巧》精讲与精练高分突破系列(人教A版2019选择性必修第二册).docx
  • 专题强化训练二 空间向量在点线面距离、存在性问题的应用-2022-2023学年高二数学《考点•题型 •技巧》精讲与精练高分突破系列(人教A版2019选择性必修第一册).docx专题强化训练二 空间向量在点线面距离、存在性问题的应用-2022-2023学年高二数学《考点•题型 •技巧》精讲与精练高分突破系列(人教A版2019选择性必修第一册).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1