《新步步高》2017版高考数学江苏(文)考前三个月配套文档 专题9 数学思想 第1讲 WORD版含答案.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新步步高 新步步高2017版高考数学江苏文考前三个月配套文档 专题9数学思想 第1讲 WORD版含答案 步步高 2017 高考 数学 江苏 考前 三个月 配套 文档 专题 思想 WORD 答案
- 资源描述:
-
1、第1讲函数与方程思想思想方法解读1.函数与方程思想的含义(1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决的思想方法(2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决的思想方法2函数与方程思想在解题中的应用(1)函数与不等式的相互转化,对函数yf(x),当y0时,就化为不等式f(x)0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式(2)数列的
2、通项与前n项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要(3)解析几何中的许多问题,需要通过解二元方程组才能解决这都涉及二次方程与二次函数的有关理论(4)立体几何中有关线段、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决体验高考1(2015湖南)已知函数f(x)若存在实数b,使函数g(x)f(x)b有两个零点,则a的取值范围是_答案(,0)(1,)解析函数g(x)有两个零点,即方程f(x)b0有两个不等实根,则函数yf(x)和yb的图象有两个公共点若aa时,f(x)x2,函数先单调递减后单调递增,f(x)的图象如图(1)实线部分所示,其与直线yb可能有两个公
3、共点若0a1,则a3a2,函数f(x)在R上单调递增,f(x)的图象如图(2)实线部分所示,其与直线yb至多有一个公共点若a1,则a3a2,函数f(x)在R上不单调,f(x)的图象如图(3)实线部分所示,其与直线yb可能有两个公共点综上,a1.2(2015安徽)设x3axb0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是_(写出所有正确条件的编号)a3,b3;a3,b2;a3,b2;a0,b2;a1,b2.答案解析令f(x)x3axb,f(x)3x2a,当a0时,f(x)0,f(x)单调递增,必有一个实根,正确;当a0时,由于选项当中a3,只考虑a3这一种情况,f(x)3x2
4、33(x1)(x1),f(x)极大f(1)13bb2,f(x)极小f(1)13bb2,要有一根,f(x)极大0,b2,正确,错误所有正确条件为.高考必会题型题型一利用函数与方程思想解决图象交点或方程根等问题例1(2016天津改编)已知函数f(x) (a0,且a1)在R上单调递减,且关于x的方程|f(x)|2x恰有两个不相等的实数解,则a的取值范围是_答案解析由yloga(x1)1在0,)上递减,得0a2,即a时,由x2(4a3)x3a2x(其中x0),得x2(4a2)x3a20(其中xf(x),且f(0)1,则不等式1的解集为_答案(0,)解析构造函数g(x),则g(x).由题意得g(x)0恒
5、成立,所以函数g(x)在R上单调递减又g(0)g(0),所以1,即g(x)0,所以不等式的解集为(0,)点评不等式恒成立问题的处理方法在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题同时要注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更明朗化一般地,已知存在范围的量为变量,而待求范围的量为参数变式训练2已知f(x)log2x,x2,16,对于函数f(x)值域内的任意实数m,使x2mx42m4x恒成立的实数x的取值范围为_答案(,2)(2,)解析x2,16,f(x)log2x1,4,即m1,4不等式x2mx42m
6、4x恒成立,即为m(x2)(x2)20恒成立,设g(m)(x2)m(x2)2,则此函数在1,4上恒大于0,所以即解得x2.题型三函数与方程思想在数列中的应用例3已知数列an是首项为2,各项均为正数的等差数列,a2,a3,a41成等比数列,设bn(其中Sn是数列an的前n项和),若对任意nN*,不等式bnk恒成立,求实数k的最小值解因为a12,aa2(a41),又因为an是正项等差数列,故d0,所以(22d)2(2d)(33d),得d2或d1(舍去),所以数列an的通项公式an2n.因为Snn(n1),所以bn.令f(x)2x(x1),则f(x)2,当x1时,f(x)0恒成立,所以f(x)在1,
7、)上是增函数,故当x1时,f(x)minf(1)3,即当n1时,(bn)max,要使对任意的正整数n,不等式bnk恒成立,则须使k(bn)max,所以实数k的最小值为.点评数列问题函数(方程)化法数列问题函数(方程)化法与形式结构函数(方程)化法类似,但要注意数列问题中n的取值范围为正整数,涉及的函数具有离散性特点,其一般解题步骤为:第一步:分析数列式子的结构特征第二步:根据结构特征构造“特征”函数(方程),转化问题形式第三步:研究函数性质结合解决问题的需要,研究函数(方程)的相关性质,主要涉及函数单调性与最值、值域问题的研究第四步:回归问题结合对函数(方程)相关性质的研究,回归问题变式训练3
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-793191.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
