分享
分享赚钱 收藏 举报 版权申诉 / 22

类型湖北省武汉十六中2016届高三数学上学期8月适应性试卷文理含解析.doc

  • 上传人:a****
  • 文档编号:338937
  • 上传时间:2025-11-27
  • 格式:DOC
  • 页数:22
  • 大小:1.18MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    湖北省 武汉 十六 2016 届高三 数学 上学 适应性 试卷 文理 解析
    资源描述:

    1、2015-2016学年湖北省武汉十六中高三(上)8月适应性数学试卷(文理合卷)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是满足题目要求的,把正确选项的代号填在答题卡上)1设复数z满足=i,则|z|=( )A1BCD22设命题p:nN,n22n,则p为( )AnN,n22nBnN,n22nCnN,n22nDnN,n2=2n3设D为ABC所在平面内一点,则( )ABCD4已知an是公差为1的等差数列;Sn为an的前n项和,若S8=4S4,则a10=( )ABC10D125已知函数f(x)=且f(a)=3,则f(6a)=( )ABCD6已知M(x0,y0

    2、)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若0,则y0的取值范围是( )ABCD7在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( )A14斛B22斛C36斛D66斛8一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )ABCD9已知A,B为双曲线E的左,右顶点,点M在E上,ABM为等腰三角形,顶角为120,则E的离心率为( )AB2CD10已知定义在R上的函数f(x)=2|xm|1(m为

    3、实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为( )AabcBacbCcabDcba11函数f(x)=cos(x+)的部分图象如图所示,则f(x)的单调递减区间为( )A(k,k+,),kzB(2k,2k+),kzC(k,k+),kzD(,2k+),kz12已知函数f(x)=,函数g(x)=bf(2x),其中bR,若函数y=f(x)g(x)恰有4个零点,则b的取值范围是( )A(,+)B(,)C(0,)D(,2)二、填空题:(本大题共4小题,每小题5分,共20分把正确答案填在答题卡的相应位置)13若x,y满足约束条件则的最大值为_14

    4、一个圆经过椭圆+=1的三个顶点,且圆心在x轴上,则该圆的标准方程为_15在ABC中,a=4,b=5,c=6,则=_16(文科)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=_(理科)曲线y=x2与y=x所围成的封闭图形的面积为_三、解答题:(本大题共6小题,共70分解答应写出文字说明,证明过程或演算步骤)17已知函数f(x)=sin2xsin2(x),xR(1)求f(x)的最小正周期;(2)求f(x)在区间,上的最大值和最小值18已知数列an满足an+2=qan(q为实数,且q1),nN*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等

    5、差数列(1)求q的值和an的通项公式;(2)设bn=,nN*,求数列bn的前n项和19如图,在四棱锥AEFCB中,AEF为等边三角形,平面AEF平面EFCB,EFBC,BC=4,EF=2a,EBC=FCB=60,O为EF的中点()求证:AOBE()求二面角FAEB的余弦值;()若BE平面AOC,求a的值20甲、乙、丙三人进行乒乓球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判设各局中双方获胜的概率均为,各局比赛的结果相互独立,第1局甲当裁判()求第4局甲当裁判的概率;()用X表示前4局中乙当裁判的次数,求X的分布列和数学期望21椭圆C:=1(ab0)的左、右焦点分别

    6、是F1,F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为1()求椭圆C的方程;()点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2设F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围22已知函数f(x)=exln(x+m)()设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;()当m2时,证明f(x)02015-2016学年湖北省武汉十六中高三(上)8月适应性数学试卷(文理合卷)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是满足题目要求的,把正确选项的代号填在答题卡上)1设复数z满足=i,则|z|=( )A

    7、1BCD2【考点】复数求模 【专题】计算题;数系的扩充和复数【分析】先化简复数,再求模即可【解答】解:复数z满足=i,z=i,|z|=1,故选:A【点评】本题考查复数的运算,考查学生的计算能力,比较基础2设命题p:nN,n22n,则p为( )AnN,n22nBnN,n22nCnN,n22nDnN,n2=2n【考点】命题的否定 【专题】简易逻辑【分析】根据特称命题的否定是全称命题即可得到结论【解答】解:命题的否定是:nN,n22n,故选:C【点评】本题主要考查含有量词的命题的否定,比较基础3设D为ABC所在平面内一点,则( )ABCD【考点】平行向量与共线向量 【专题】平面向量及应用【分析】将向

    8、量利用向量的三角形法则首先表示为,然后结合已知表示为的形式【解答】解:由已知得到如图由=;故选:A【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为4已知an是公差为1的等差数列;Sn为an的前n项和,若S8=4S4,则a10=( )ABC10D12【考点】等差数列的前n项和 【专题】等差数列与等比数列【分析】利用等差数列的通项公式及其前n项和公式即可得出【解答】解:an是公差为1的等差数列,S8=4S4,=4(4a1+),解得a1=则a10=故选:B【点评】本题考查了等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题5已知函数f(x)=且f(a)=3,则f

    9、(6a)=( )ABCD【考点】分段函数的应用;函数的零点 【专题】函数的性质及应用【分析】由f(a)=3,结合指数和对数的运算性质,求得a=7,再由分段函数求得f(6a)的值【解答】解:函数f(x)=且f(a)=3,若a1,则2a12=3,即有2a1=10,方程无解;若a1,则log2(a+1)=3,解得a=7,则f(6a)=f(1)=2112=故选:A【点评】本题考查分段函数的运用:求函数值,主要考查指数和对数的运算性质,属于中档题6已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若0,则y0的取值范围是( )ABCD【考点】双曲线的简单性质 【专题】计算题;圆锥曲

    10、线的定义、性质与方程【分析】利用向量的数量积公式,结合双曲线方程,即可确定y0的取值范围【解答】解:由题意,=(x0,y0)(x0,y0)=x023+y02=3y0210,所以y0故选:A【点评】本题考查向量的数量积公式,考查双曲线方程,考查学生的计算能力,比较基础7在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( )A14斛B22斛C36斛D66斛【考点】棱柱、棱锥、棱台的体积 【专题】数形结合;综合法;立体几何【分析】根据米堆底部的弧度即底面

    11、圆周的四分之一为8尺,可求出圆锥的底面半径,再计算出米堆的体积,将体积除以1.62即可估算出米堆的斛数【解答】解:设米堆所在圆锥的底面半径为r尺,则2r=8,解得r=,米堆的体积是V=r25=米堆的斛数为22故选B【点评】本题考查了圆锥的体积,是基础题8一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )ABCD【考点】由三视图求面积、体积 【专题】计算题;空间位置关系与距离【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,正方体切掉部分的

    12、体积为111=,剩余部分体积为1=,截去部分体积与剩余部分体积的比值为故选:D【点评】本题考查了由三视图判断几何体的形状,求几何体的体积9已知A,B为双曲线E的左,右顶点,点M在E上,ABM为等腰三角形,顶角为120,则E的离心率为( )AB2CD【考点】双曲线的简单性质 【专题】圆锥曲线的定义、性质与方程【分析】设M在双曲线=1的左支上,由题意可得M的坐标为(2a,a),代入双曲线方程可得a=b,再由离心率公式即可得到所求值【解答】解:设M在双曲线=1的左支上,且MA=AB=2a,MAB=120,则M的坐标为(2a,a),代入双曲线方程可得,=1,可得a=b,c=a,即有e=故选:D【点评】

    13、本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,运用任意角的三角函数的定义求得M的坐标是解题的关键10已知定义在R上的函数f(x)=2|xm|1(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为( )AabcBacbCcabDcba【考点】函数单调性的性质 【专题】函数的性质及应用【分析】根据f(x)为偶函数便可求出m=0,从而f(x)=2|x|1,这样便知道f(x)在0,+)上单调递增,根据f(x)为偶函数,便可将自变量的值变到区间0,+)上:a=f(|log0.53|),b=f(log25),c=f(0),然后再比较自

    14、变量的值,根据f(x)在0,+)上的单调性即可比较出a,b,c的大小【解答】解:f(x)为偶函数;f(x)=f(x);2|xm|1=2|xm|1;|xm|=|xm|;(xm)2=(xm)2;mx=0;m=0;f(x)=2|x|1;f(x)在0,+)上单调递增,并且a=f(|log0.53|)=f(log23),b=f(log25),c=f(0);0log23log25;cab故选:C【点评】考查偶函数的定义,指数函数的单调性,对于偶函数比较函数值大小的方法就是将自变量的值变到区间0,+)上,根据单调性去比较函数值大小对数的换底公式的应用,对数函数的单调性,函数单调性定义的运用11函数f(x)=

    15、cos(x+)的部分图象如图所示,则f(x)的单调递减区间为( )A(k,k+,),kzB(2k,2k+),kzC(k,k+),kzD(,2k+),kz【考点】余弦函数的单调性 【专题】三角函数的图像与性质【分析】由周期求出,由五点法作图求出,可得f(x)的解析式,再根据余弦函数的单调性,求得f(x)的减区间【解答】解:由函数f(x)=cos(x+)的部分图象,可得函数的周期为=2()=2,=,f(x)=cos(x+)再根据函数的图象以及五点法作图,可得+=,kz,即=,f(x)=cos(x+)由2kx+2k+,求得 2kx2k+,故f(x)的单调递减区间为(,2k+),kz,故选:D【点评】

    16、本题主要考查由函数y=Asin(x+)的部分图象求解析式,由周期求出,由五点法作图求出的值;还考查了余弦函数的单调性,属于基础题12已知函数f(x)=,函数g(x)=bf(2x),其中bR,若函数y=f(x)g(x)恰有4个零点,则b的取值范围是( )A(,+)B(,)C(0,)D(,2)【考点】根的存在性及根的个数判断 【专题】创新题型;函数的性质及应用【分析】求出函数y=f(x)g(x)的表达式,构造函数h(x)=f(x)+f(2x),作出函数h(x)的图象,利用数形结合进行求解即可【解答】解:g(x)=bf(2x),y=f(x)g(x)=f(x)b+f(2x),由f(x)b+f(2x)=

    17、0,得f(x)+f(2x)=b,设h(x)=f(x)+f(2x),若x0,则x0,2x2,则h(x)=f(x)+f(2x)=2+x+x2,若0x2,则2x0,02x2,则h(x)=f(x)+f(2x)=2x+2|2x|=2x+22+x=2,若x2,x2,2x0,则h(x)=f(x)+f(2x)=(x2)2+2|2x|=x25x+8即h(x)=,作出函数h(x)的图象如图:当x0时,h(x)=2+x+x2=(x+)2+,当x2时,h(x)=x25x+8=(x)2+,故当b=时,h(x)=b,有两个交点,当b=2时,h(x)=b,有无数个交点,由图象知要使函数y=f(x)g(x)恰有4个零点,即h

    18、(x)=b恰有4个根,则满足b2,故选:D【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键二、填空题:(本大题共4小题,每小题5分,共20分把正确答案填在答题卡的相应位置)13若x,y满足约束条件则的最大值为3【考点】简单线性规划 【专题】不等式的解法及应用【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定的最大值【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC)设k=,则k的几何意义为区域内的点到原点的斜率,由图象知OA的斜率最大,由,解得,即A(1,3),则kOA=3,即的最大值为3故答案为:3【点评】本题

    19、主要考查线性规划的应用,结合目标函数的几何意义以及直线的斜率,利用数形结合的数学思想是解决此类问题的基本方法14一个圆经过椭圆+=1的三个顶点,且圆心在x轴上,则该圆的标准方程为(x)2+y2=【考点】椭圆的简单性质 【专题】计算题;方程思想;数学模型法;圆锥曲线的定义、性质与方程【分析】由椭圆的方程求出顶点坐标,然后求出圆心坐标,进一步求出圆的半径可得圆的方程【解答】解:由+=1,可知椭圆的右顶点坐标(4,0),上下顶点坐标(0,2),圆经过椭圆+=1的三个顶点,且圆心在x轴上当圆经过椭圆右顶点及短轴两端点时,设圆的圆心(a,0),则,解得a=,圆的半径为:,所求圆的方程为:(x)2+y2=

    20、;当圆经过椭圆左顶点及短轴两端点时,讨论可得圆的方程为:(x+)2+y2=故答案为:(x)2+y2=【点评】本题考查椭圆的简单性质的应用,圆的方程的求法,考查计算能力,是中档题15在ABC中,a=4,b=5,c=6,则=1【考点】余弦定理;二倍角的正弦;正弦定理 【专题】计算题;解三角形【分析】利用余弦定理求出cosC,cosA,即可得出结论【解答】解:ABC中,a=4,b=5,c=6,cosC=,cosA=sinC=,sinA=,=1故答案为:1【点评】本题考查余弦定理,考查学生的计算能力,比较基础16(文科)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切

    21、,则a=8(理科)曲线y=x2与y=x所围成的封闭图形的面积为【考点】极限及其运算;导数的几何意义;定积分 【专题】计算题;数形结合法;导数的概念及应用【分析】(文科)先运用导数求切线的斜率,得到切线方程,再根据该直线与抛物线相切,由=0解出a;(理科)先求出两曲线的交点,得到积分的上,下限,再用定积分求面积【解答】解:(文科)y=1+=2,即切线的斜率为2,根据点斜式,求得切线方程为y=2x1,该直线又与抛物线y=ax2+(a+2)x+1相切(a0),联立得,ax2+(a+2)x+1=2x1,整理得,ax2+ax+2=0,由=0解得a=8(舍a=0),故答案为:8(理科)联立方程解得x=0或

    22、x=1,两曲线围成的面积根据定积分得,S=x=,故答案为:【点评】本题主要考查了导数的简单应用和定积分的应用,属于基础题三、解答题:(本大题共6小题,共70分解答应写出文字说明,证明过程或演算步骤)17已知函数f(x)=sin2xsin2(x),xR(1)求f(x)的最小正周期;(2)求f(x)在区间,上的最大值和最小值【考点】复合三角函数的单调性;三角函数的周期性及其求法 【专题】三角函数的图像与性质【分析】(1)利用二倍角的余弦降幂化积,则函数的最小正周期可求;(2)由x的范围求得相位的范围,进一步求得函数的最值【解答】解:(1)f(x)=sin2xsin2(x)=f(x)的最小正周期T=

    23、;(2)x,2x,则2x,故f(x)在区间,上的最大值和最小值分别为【点评】本题考查y=Asin(x+)型函数的图象和性质,考查三角函数值域的求法,运用辅助角公式化简是解答该题的关键,是基础题18已知数列an满足an+2=qan(q为实数,且q1),nN*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列(1)求q的值和an的通项公式;(2)设bn=,nN*,求数列bn的前n项和【考点】数列的求和 【专题】计算题;分类讨论;分析法;等差数列与等比数列【分析】(1)通过an+2=qan、a1、a2,可得a3、a5、a4,利用a2+a3,a3+a4,a4+a5成等差数列,计算即可

    24、;(2)通过(1)知bn=,nN*,写出数列bn的前n项和Tn、2Tn的表达式,利用错位相减法及等比数列的求和公式,计算即可【解答】解:(1)an+2=qan(q为实数,且q1),nN*,a1=1,a2=2,a3=q,a5=q2,a4=2q,又a2+a3,a3+a4,a4+a5成等差数列,23q=2+3q+q2,即q23q+2=0,解得q=2或q=1(舍),an=;(2)由(1)知bn=,nN*,记数列bn的前n项和为Tn,则Tn=1+2+3+4+(n1)+n,2Tn=2+2+3+4+5+(n1)+n,两式相减,得Tn=3+n=3+n=3+1n=4【点评】本题考查求数列的通项与前n项和,考查分

    25、类讨论的思想,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题19如图,在四棱锥AEFCB中,AEF为等边三角形,平面AEF平面EFCB,EFBC,BC=4,EF=2a,EBC=FCB=60,O为EF的中点()求证:AOBE()求二面角FAEB的余弦值;()若BE平面AOC,求a的值【考点】二面角的平面角及求法;直线与平面垂直的判定;直线与平面垂直的性质 【专题】空间位置关系与距离;空间角【分析】()根据线面垂直的性质定理即可证明AOBE()建立空间坐标系,利用向量法即可求二面角FAEB的余弦值;()利用线面垂直的性质,结合向量法即可求a的值【解答】证明:()AEF为等边三角形,

    26、O为EF的中点,AOEF,平面AEF平面EFCB,AO平面AEF,AO平面EFCBAOBE()取BC的中点G,连接OG,EFCB是等腰梯形,OGEF,由()知AO平面EFCB,OG平面EFCB,OAOG,建立如图的空间坐标系,则OE=a,BG=2,GH=a,BH=2a,EH=BHtan60=,则E(a,0,0),A(0,0,a),B(2,0),=(a,0,a),=(a2,0),设平面AEB的法向量为=(x,y,z),则,即,令z=1,则x=,y=1,即=(,1,1),平面AEF的法向量为,则cos=即二面角FAEB的余弦值为;()若BE平面AOC,则BEOC,即=0,=(a2,0),=(2,0

    27、),=2(a2)3(a2)2=0,解得a=【点评】本题主要考查空间直线和平面垂直的判定以及二面角的求解,建立坐标系利用向量法是解决空间角的常用方法20甲、乙、丙三人进行乒乓球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判设各局中双方获胜的概率均为,各局比赛的结果相互独立,第1局甲当裁判()求第4局甲当裁判的概率;()用X表示前4局中乙当裁判的次数,求X的分布列和数学期望【考点】离散型随机变量的期望与方差;相互独立事件的概率乘法公式 【专题】应用题;概率与统计【分析】(I)令A1表示第2局结果为甲获胜,A2表示第3局甲参加比赛时,结果为甲负,A表示第4局甲当裁判,分析

    28、其可能情况,每局比赛的结果相互独立且互斥,利用独立事件、互斥事件的概率求解即可(II)X的所有可能值为0,1,2分别求出X取每一个值的概率,列出分布列后求出期望值即可【解答】解:(I)令A1表示第2局结果为甲获胜A2表示第3局甲参加比赛时,结果为甲负A表示第4局甲当裁判则A=A1A2,P(A)=P(A1A2)=P(A1)P(A2)=;()X的所有可能值为0,1,2令A3表示第3局乙和丙比赛时,结果为乙胜B1表示第1局结果为乙获胜,B2表示第2局乙和甲比赛时,结果为乙胜,B3表示第3局乙参加比赛时,结果为乙负,则P(X=0)=P(B1B2)=P(B1)P(B2)P()=P(X=2)=P(B3)=

    29、P()P(B3)=P(X=1)=1P(X=0)P(X=2)=故X的分布列为 X012P从而EX=0+1+2=【点评】本题考查互斥、独立事件的概率,离散型随机变量的分布列和期望等知识,同时考查利用概率知识解决问题的能力21椭圆C:=1(ab0)的左、右焦点分别是F1,F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为1()求椭圆C的方程;()点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2设F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围【考点】椭圆的简单性质 【专题】综合题;探究型;分类讨论;方程思想;综合法;圆锥曲线的定义、性质与方程【分析】()由椭圆通径

    30、,得a=2b2,结合椭圆离心率可得a,b的值,则椭圆方程可求;()设出P(x0,y0),当0x02时,分和求解,当时,设出直线PF1,PF2的方程,由点到直线的距离公式可得m与k1,k2的关系式,再把k1,k2用含有x0,y0的代数式表示,进一步得到再由x0的范围求得m的范围;当2x00时,同理可得则m的取值范围可求【解答】解:()由于c2=a2b2,将x=c代入椭圆方程,得,由题意知,即a=2b2又,a=2,b=1故椭圆C的方程为;()设P(x0,y0),当0x02时,当时,直线PF2的斜率不存在,易知或若,则直线PF1的方程为由题意得,若,同理可得当时,设直线PF1,PF2的方程分别为,由

    31、题意知,且,即,0x02且,整理得,故0且m综合可得当2x00时,同理可得综上所述,m的取值范围是 【点评】本题主要考查圆锥曲线的定义的应用,试题在平面几何中的三角形内角平分线性质定理、点到直线的距离公式和圆锥曲线的定义之间进行了充分的交汇,考查运算能力,是压轴题22已知函数f(x)=exln(x+m)()设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;()当m2时,证明f(x)0【考点】利用导数研究函数的单调性;根据实际问题选择函数类型 【专题】压轴题;导数的综合应用【分析】()求出原函数的导函数,因为x=0是函数f(x)的极值点,由极值点处的导数等于0求出m的值,代入函数解析式后

    32、再由导函数大于0和小于0求出原函数的单调区间;()证明当m2时,f(x)0,转化为证明当m=2时f(x)0求出当m=2时函数的导函数,可知导函数在(2,+)上为增函数,并进一步得到导函数在(1,0)上有唯一零点x0,则当x=x0时函数取得最小值,借助于x0是导函数的零点证出f(x0)0,从而结论得证【解答】()解:,x=0是f(x)的极值点,解得m=1所以函数f(x)=exln(x+1),其定义域为(1,+)设g(x)=ex(x+1)1,则g(x)=ex(x+1)+ex0,所以g(x)在(1,+)上为增函数,又g(0)=0,所以当x0时,g(x)0,即f(x)0;当1x0时,g(x)0,f(x

    33、)0所以f(x)在(1,0)上为减函数;在(0,+)上为增函数;()证明:当m2,x(m,+)时,ln(x+m)ln(x+2),故只需证明当m=2时f(x)0当m=2时,函数在(2,+)上为增函数,且f(1)0,f(0)0故f(x)=0在(2,+)上有唯一实数根x0,且x0(1,0)当x(2,x0)时,f(x)0,当x(x0,+)时,f(x)0,从而当x=x0时,f(x)取得最小值由f(x0)=0,得,ln(x0+2)=x0故f(x)=0综上,当m2时,f(x)0【点评】本题考查了利用导数研究函数的单调性,利用导数求函数在闭区间上的最值,考查了不等式的证明,考查了函数与方程思想,分类讨论的数学思想,综合考查了学生分析问题和解决问题的能力熟练函数与导数的基础知识是解决该题的关键,是难题

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:湖北省武汉十六中2016届高三数学上学期8月适应性试卷文理含解析.doc
    链接地址:https://www.ketangku.com/wenku/file-338937.html
    相关资源 更多
  • 江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc
  • 江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc
  • 江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx
  • 湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc
  • 湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc
  • 湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc
  • 湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc
  • 江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc
  • 江西省重点高中2022学年高一数学上学期第三次月考试题.docx江西省重点高中2022学年高一数学上学期第三次月考试题.docx
  • 湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc
  • 江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc
  • 江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc
  • 湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc
  • 江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1