分享
分享赚钱 收藏 举报 版权申诉 / 9

类型2022届高考数学统考一轮复习 课后限时集训43 直线、平面平行的判定及其性质(理含解析)新人教版.doc

  • 上传人:高****
  • 文档编号:412493
  • 上传时间:2024-05-27
  • 格式:DOC
  • 页数:9
  • 大小:351.50KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022届高考数学统考一轮复习 课后限时集训43 直线、平面平行的判定及其性质理含解析新人教版 2022 高考 数学 统考 一轮 复习 课后 限时 集训 43 直线 平面 平行 判定 及其 性质 解析
    资源描述:

    1、课后限时集训(四十三)直线、平面平行的判定及其性质建议用时:40分钟一、选择题1若直线l不平行于平面,且l,则()A内的所有直线与l异面B内不存在与l平行的直线C与直线l至少有两个公共点D内的直线与l都相交Bl,且l与不平行,lP,故内不存在与l平行的直线故选B2.如图所示的三棱柱ABCA1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB的位置关系是()A异面B平行C相交D以上均有可能B由面面平行的性质可得DEA1B1,又A1B1AB,故DEAB所以选B3已知m,n是两条不同的直线,是三个不同的平面,下列命题中正确的是()A若m,n,则mnB若m,m,则C若,则D若m,n,则mn

    2、D选项A中,两直线可能平行,相交或异面,故选项A错误;选项B中,两平面可能平行或相交,故选项B错误;选项C中,两平面可能平行或相交,故选项C错误;选项D中,由线面垂直的性质定理可知结论正确故选D4下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,则能得出AB平面MNP的图形的序号是()A B C DC对于图形,易得平面MNP与AB所在的对角面平行,所以AB平面MNP;对于图形,易得ABPN,又AB平面MNP,PN平面MNP,所以AB平面MNP;图形无论用定义还是判定定理都无法证明线面平行故选C5.如图,AB平面平面,过A,B的直线m,n分别交,于C,E和D,F,若

    3、AC2,CE3,BF4,则BD的长为()A BC DC由AB,易证,即,所以BD.6若平面截三棱锥所得截面为平行四边形,则该三棱锥与平面平行的棱有()A0条 B1条C2条 D0条或2条C如图,设平面截三棱锥所得的四边形EFGH是平行四边形,则EFGH,EF平面BCD,GH平面BCD,所以EF平面BCD,又EF平面ACD,平面ACD平面BCDCD,则EFCD,EF平面EFGH,CD平面EFGH,则CD平面EFGH,同理AB平面EFGH,所以该三棱锥与平面平行的棱有2条,故选C二、填空题7设,是三个不同的平面,m,n是两条不同的直线,在命题“m,n,且 ,则mn”中的横线处填入下列三组条件中的一组

    4、,使该命题为真命题,n;m,n;n,m.可以填入的条件有 和由面面平行的性质定理可知,正确;当n,m时,n和m在同一平面内,且没有公共点,所以平行,正确8.如图所示,正方体ABCDA1B1C1D1中,AB2,点E为AD的中点,点F在CD上若EF平面AB1C,则线段EF的长度等于 在正方体ABCDA1B1C1D1中,AB2,AC2.又E为AD中点,EF平面AB1C,EF平面ADC,平面ADC平面AB1CAC,EFAC,F为DC中点,EFAC.9棱长为2的正方体ABCDA1B1C1D1中,M是棱AA1的中点,过C,M,D1作正方体的截面,则截面的面积是 如图,由面面平行的性质知截面与平面ABB1A

    5、1的交线MN是AA1B的中位线,所以截面是梯形CD1MN,易求其面积为.三、解答题10(2020徐州模拟)如图,在三棱柱ABCA1B1C1中,E,F分别为A1C1和BC的中点,M,N分别为A1B和A1C的中点求证:(1)MN平面ABC;(2)EF平面AA1B1B证明(1)M、N分别是A1B和A1C的中点MNBC,又BC平面ABC,MN平面ABC,MN平面ABC(2)如图,取A1B1的中点D,连接DE,BDD为A1B1的中点,E为A1C1中点,DEB1C1且DEB1C1,在三棱柱ABCA1B1C1中,侧面BCC1B1是平行四边形,BCB1C1且BCB1C1,F是BC的中点,BFB1C1且BFB1

    6、C1,DEBF且DEBF,四边形DEFB是平行四边形,EFBD,又BD平面AA1B1B,EF平面AA1B1B,EF平面AA1B1B11.如图,在正方体ABCDABCD中,E,F分别是AB,BC的中点(1)若M为BB的中点,证明:平面EMF平面ABCD;(2)在(1)的条件下,当正方体的棱长为2时,求三棱锥MEBF的体积解(1)证明:在正方体ABCDABCD中,E,F分别是AB,BC的中点,M为BB的中点,MEAB,MFBCBC,MEMFM,ABBCB,ME,MF平面MEF,AB,BC平面ABCD,平面EMF平面ABCD(2)E,F分别是AB,BC的中点,M为BB的中点,ME綊AB1,MF綊BC

    7、1,BM平面MEF,BM1,ABBC,EMMF,SMEFMEMF11,三棱锥MEBF的体积:VMEBFVBMEFSEMFBM1.1.如图所示,透明塑料制成的长方体容器ABCDA1B1C1D1内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:没有水的部分始终呈棱柱形;水面EFGH所在四边形的面积为定值;棱A1D1始终与水面所在平面平行;当容器倾斜如图所示时,BEBF是定值其中正确命题的个数是()A1 B2 C3 D4C由题图,显然正确,错误; 对于,A1D1BC,BCFG,A1D1FG且A1D1平面EFGH,FG平面EFGH,A1D1平面EFGH(水面)

    8、正确;对于,水是定量的(定体积V),SBEFBCV,即BEBFBCV.BEBF(定值),即正确,故选C2.在三棱锥SABC中,ABC是边长为6的正三角形,SASBSC12,平面DEFH分别与AB,BC,SC,SA交于D,E,F,H,且它们分别是AB,BC,SC,SA的中点,那么四边形DEFH的面积为()A18 B18 C36 D36A因为D,E,F,H分别是AB,BC,SC,SA的中点,所以DEAC,FHAC,DHSB,EFSB,则四边形DEFH是平行四边形,且HDSB6,DEAC3.如图,取AC的中点O,连接OB、SO,因为SASC12,ABBC6,所以ACSO,ACOB,又SOOBO,所以

    9、AO平面SOB,所以AOSB,则HDDE,即四边形 DEFH是矩形,所以四边形DEFH的面积S6318,故选A3.如图,AB是圆O的直径,点C是圆O上异于A,B的点,P为平面ABC外一点,E、F分别是PA、PC的中点记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明解直线l平面PAC,证明如下:因为E、F分别是PA、PC的中点,所以EFAC又EF平面ABC,且AC平面ABC,所以EF平面ABC而EF平面BEF,且平面BEF平面ABCl,所以EFl.因为l平面PAC,EF平面PAC,所以l平面PAC1.如图所示,在正四棱柱ABCDA1B1C1D1中,E,F,G,H

    10、分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件 时,就有MN平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)点M在线段FH上(或点M与点H重合)连接HN,FH,FN(图略),则FHDD1,HNBD,平面FHN平面B1BDD1,只需MFH,则MN平面FHN,MN平面B1BDD1.2.如图,四棱锥PABCD中,ABCD,AB2CD,E为PB的中点(1)求证:CE平面PAD(2)在线段AB上是否存在一点F,使得平面PAD平面CEF?若存在,证明你的结论,若不存在,请说明理由解(1)证明:如图,取PA的中点H,连接EH,DH,因为E为PB的中点,所以EHAB,EHAB,又ABCD,CDAB,所以EHCD,EHCD,因此四边形DCEH为平行四边形,所以CEDH,又DH平面PAD,CE平面PAD,因此CE平面PAD(2)存在点F为AB的中点,使平面PAD平面CEF,证明如下:取AB的中点F,连接CF,EF,则AFAB,因为CDAB,所以AFCD,又AFCD,所以四边形AFCD为平行四边形,因此CFAD又AD平面PAD,CF平面PAD,所以CF平面PAD,由(1)可知CE平面PAD,又CECFC,故平面CEF平面PAD,故存在AB的中点F满足要求

    展开阅读全文
    提示  免费在线备课命题出卷组卷网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022届高考数学统考一轮复习 课后限时集训43 直线、平面平行的判定及其性质(理含解析)新人教版.doc
    链接地址:https://www.ketangku.com/wenku/file-412493.html
    关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024023398号