广西钦州市2020-2021学年高一上学期期末考试数学试题 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 广西钦州市2020-2021学年高一上学期期末考试数学试题 WORD版含解析 广西 钦州市 2020 2021 学年 高一上 学期 期末考试 数学试题 WORD 解析
- 资源描述:
-
1、钦州市2020年秋季学期教学质量监测高一数学(考试时间:120分钟;赋分:150分)第卷一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个备选项中,有且只有一项是符合题目要求的(温馨提示:请在答题卡上作答,在本试卷上作答无效)1. 设全集,集合,则( )A. B. C. D. 【答案】A【解析】【分析】根据补集的概念运算可得结果.【详解】因为全集,集合,所以.故选:A2. 下列角中,与角终边相同的角是( )A. B. C. D. 【答案】B【解析】【分析】利用终边相同的角的表示可得结果.【详解】因为,所以与终边相同,故A不正确;因为,所以与终边相同,故B正确;和显然与终边不同
2、,故C D不正确.故选:B3. 已知向量,若,则实数的值为( )A. 2B. C. 3D. 【答案】C【解析】【分析】直接由可得解.【详解】向量,若,则,解得.故选:C.4. 已知,则的值等于( )A. B. C. D. 【答案】B【解析】【分析】先根据角的范围得到,进而由二倍角公式可得.【详解】由,可得,所以,所以.故选:B.5. 函数在单调递增,则实数的取值范围是( )A. B. C. D. 【答案】A【解析】【分析】直接由抛物线对称轴和区间端点比较大小即可.【详解】函数为开口向上的抛物线,对称轴为函数在单调递增,则,解得.故选:A6. 已知,则( )A. B. 3C. 4D. 【答案】B
3、【解析】【分析】直接弦化切可得解.【详解】由,所以.故选:B.7. 函数(其中是自然对数的底数)的图象大致为( )A. B. C. D. 【答案】A【解析】【分析】由函数的奇偶性排除;由的函数值,排除;由当时的函数值,确定答案.【详解】由题得函数的定义域为,因为,所以函数是奇函数,所以排除;当时,所以排除;当时,所以选.故选:A【点睛】方法点睛:根据函数的解析式找图象,一般先找图象的差异,再用解析式验证得解.8. 已知和为函数(其中)的两条相邻的对称轴,则的值是( )A. 3B. C. 2D. 1【答案】D【解析】【分析】直接由对称轴得半周期为,再利用周期公式求解即可.【详解】由,由和为两条相
4、邻的对称轴,所以周期,所以,解得.故选:D.9. 已知则的大小关系是( )A. B. C. D. 【答案】C【解析】【分析】由幂函数在 上是增函数可比较,再由即可得解.【详解】因为,在 上是增函数,所以 ,又所以 ,故选:C10. 已知是定义在上的偶函数,在上单调递增,若,则满足的的取值范围是( )A. B. C. D. 【答案】A【解析】分析】根据函数奇偶性,结合函数单调性,等价转化不等式,求解即可.【详解】因为是上的偶函数,所以,因为在上单调递增,所以等价于,所以,即或,即满足条件的的取值范围是.故选:A.11. 如图,若是线段上靠近点的一个三等分点,且,则( )A. B. C. D. 【
5、答案】D【解析】【分析】由,结合共线关系及向量的加减法的应用,即可得解.【详解】,即,得.故选:D.12. 已知定义在上的函数的图象如图所示,则满足的关系是( )A. B. C. D. 【答案】D【解析】由图可知函数递增,所以,故,即,即,故选D.第卷二、填空题:本大题共4小题,每小题5分,共20分13. 计算_【答案】【解析】【分析】利用诱导公式一可得解.【详解】.故答案为:.14. 已知,则_【答案】【解析】【分析】由点坐标得,进而得解.【详解】由,得,所以故答案为:.15. 函数的最大值是_【答案】2【解析】【分析】设,则,即求在上的最大值,根据对数函数的单调性可得答案.【详解】设,则,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-495036.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
