分享
分享赚钱 收藏 举报 版权申诉 / 30

类型2019版高考数学(理)高分计划一轮高分讲义:第2章 函数、导数及其应用 2-6 对数与对数函数 WORD版含解析.docx

  • 上传人:a****
  • 文档编号:572886
  • 上传时间:2025-12-10
  • 格式:DOCX
  • 页数:30
  • 大小:1.10MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2019版高考数学理高分计划一轮高分讲义:第2章函数、导数及其应用 2-6对数与对数函数 WORD版含解析 2019 高考 数学 高分 计划 一轮 讲义 函数 导数 及其 应用 对数 WORD
    资源描述:

    1、26对数与对数函数 知识梳理1对数2对数函数的概念、图象与性质3反函数概念:当一个函数的自变量和函数值成一一对应时,可以把这个函数的因变量作为一个新的函数的自变量,而把这个函数的自变量作为新的函数的因变量,我们称这两个函数互为反函数4对数函数与指数函数的关系指数函数yax(a0且a1)与对数函数ylogax(a0且a1)互为反函数(1)对数函数的自变量x恰好是指数函数的函数值y,而对数函数的函数值y恰好是指数函数的自变量x,即二者的定义域和值域互换(2)由两函数的图象关于直线yx对称,易知两函数的单调性、奇偶性一致特别提示:底数a对函数ylogax(a0且a1)的图象的影响(1)底数a与1的大

    2、小关系决定了对数函数图象的“升降”:当a1时,对数函数的图象“上升”;当0a1还是0a1时,若logaxlogbx,则a0且a1)的图象过定点(1,0),且过点(a,1),.()答案(1)(2)(3)(4) 2教材衍化(1)(必修A1P72例8)设alog36,blog510,clog714,则()Acba Bbca Cacb Dabc答案D解析解法一:由对数运算法则得alog361log32,b1log52,c1log72,由对数函数图象得log32log52log72,所以abc,故选D.解法二:由对数运算法则得a1log32,b1log52,c1log72,log27log25log23

    3、0,即log72log52bc.故选D.(2)(必修A1P75T11)(lg 5)2lg 2lg 50_.答案1解析原式(lg 5)2lg 2lg (252)(lg 5)22lg 5lg 2(lg 2)2(lg 5lg 2)21.3小题热身(1)(2017衡阳八中一模)f(x)则f()A2 B3 C9 D9答案C解析f(x)flog32,ff(2)29.故选C.(2)(2018郑州模拟)已知lg alg b0(a0且a1,b0且b1),则f(x)ax与g(x)logbx的图象可能是()答案B解析lg alg b0,a,又g(x)logbxlogxlogax(x0),函数f(x)与g(x)的单调

    4、性相同,故选B.题型1对数的运算 (2017郑州二检)若正数a,b满足2log2a3log3blog6(ab),则的值为()A36 B72 C108 D.用转化法答案C解析设2log2a3log3blog6(ab)k,可得a2k2,b3k3,ab6k,所以108.故选C.(2018镇江模拟)已知log189a,18b5,求log3645.将指数式统一为对数式解因为log189a,18b5,所以log185b,于是log3645.方法技巧对数运算的一般思路1对于指数式、对数式混合型条件的化简求值问题,一般可利用指数与对数的关系,将所给条件统一为对数式或指数式,再根据有关运算性质求解见典例2.2在

    5、对数运算中,可先利用幂的运算性质把底数或真数变形,化成分数指数幂的形式,使幂的底数最简,然后运用对数的运算性质、换底公式,将对数式化为同底数对数的和、差、倍数运算对于连等式,注意设等式为k,见典例1.冲关针对训练1已知3a4b,则()A. B1 C2 D.答案C解析因为3a4b,所以alog3,blog4,log3,log4,所以log3log4log122.故选C.2(log32log92)(log43log83)_.答案解析原式log32log23.题型2对数函数的图象及应用(2018长春模拟)当0x时,4xlogax,则a的取值范围是()A. B. C(1,) D(,2)用数形结合法,排

    6、除法答案B解析解法一:构造函数f(x)4x和g(x)logax,当a1时不满足条件,当0a1时,画出两个函数在上的图象,可知fg,即2loga,a,则a的取值范围为.故选B.解法二:0x,14x2,logax4x1,0a1,排除选项C、D;取a,x,则有42,log1,显然4xlogax不成立,排除选项A.故选B.条件探究若典例变为:若不等式x2logax0对x恒成立,求实数a的取值范围解由x2logax0得x2logax,设f1(x)x2,f2(x)logax,要使x时,不等式x21时,显然不成立;当0a1时,如图所示,要使x2logax在x上恒成立,需f1f2,所以有2loga,解得a,所

    7、以a0且a1)的值域为y|y1,则函数yloga|x|的图象大致是()答案B解析由于ya|x|的值域为y|y1,a1,则ylogax在(0,)上是增函数,又函数yloga|x|的图象关于y轴对称因此yloga|x|的图象应大致为选项B.故选B.2(2017青岛统考)已知函数g(x)|xk|x1|,若对任意的x1,x2R,都有f(x1)g(x2)成立,则实数k的取值范围为_答案k或k解析对任意的x1,x2R,都有f(x1)g(x2)成立,即f(x)maxg(x)min,由的图象(如图)可知,当x时,f(x)取最大值,f(x)max;因为g(x)|xk|x1|xk(x1)|k1|,所以g(x)mi

    8、n|k1|,所以|k1|,解得k或k,故答案为k或k.题型3对数函数的性质及应用角度1比较对数值的大小设alog3,blog2,clog3,则()Aabc Bacb Cbac Dbca借助中间值1比较a,b的大小,用作商法比较b,c大小答案A解析因为alog3log331,blog2b,又(log23)21,b0,所以bc,故abc.故选A.角度2解对数不等式(2017江西名校联考)设函数f(x)log (x21),则不等式f(log2x)f(logx)2的解集为()A(0,2 B.C2,) D.2,)利用函数的奇偶性,单调性结合换元法解不等式答案B解析f(x)的定义域为R,f(x)log(x

    9、21)f(x),f(x)为R上的偶函数易知其在区间0,)上单调递减,令tlog2x,则logxt,则不等式f(log2x)f(logx)2可化为f(t)f(t)2,即2f(t)2,所以f(t)1.又f(1)log21,f(x)在0,)上单调递减,在R上为偶函数,1t1,即log2x1,1,x,故选B.角度3对数函数性质的综合应用已知函数f(x)loga(3ax)(1)当x0,2时,函数f(x)恒有意义,求实数a的取值范围;(2)是否存在这样的实数a,使得函数f(x)在区间1,2上为减函数,并且最大值为1?如果存在,试求出a的值;如果不存在,请说明理由根据复合函数单调性求解解(1)a0且a1,设

    10、t(x)3ax,则t(x)3ax为减函数,x0,2时,t(x)的最小值为32a,当x0,2时,f(x)恒有意义,即x0,2时,3ax0恒成立32a0,a0且a1,a(0,1).(2)t(x)3ax,a0,函数t(x)为减函数f(x)在区间1,2上为减函数,ylogat为增函数,a1,x1,2时,t(x)最小值为32a,f(x)最大值为f(1)loga(3a),即故不存在这样的实数a,使得函数f(x)在区间1,2上为减函数,并且最大值为1.方法技巧对数函数的性质及应用问题的常见题型与解题策略1对数型函数定义域的求解列出对应的不等式(组)求解,注意对数函数的底数和真数的取值范围2比较对数式的大小若

    11、底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,则需对底数进行分类讨论;若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较;若底数与真数都不同,则常借助1,0等中间量进行比较3解对数不等式,形如logaxlogab的不等式,借助ylogax的单调性求解,如果a的取值不确定,需分a1与0ab的不等式,需先将b化为以a为底的对数式的形式4对数函数性质的应用多用在复合函数的单调性上,即求形如ylogaf(x)的复合函数的单调区间,其一般步骤为:求定义域,即满足f(x)0的x的取值集合;将复合函数分解成基本初等函数ylogau及uf(x);分别确定这两个函数的单调区间

    12、;若这两个函数同增或同减,则ylogaf(x)为增函数,若一增一减,则ylogaf(x)为减函数,即“同增异减”冲关针对训练1(2018河南模拟)设a60.4,blog0.40.5,clog80.4,则a,b,c的大小关系是()Aabc Bcba Ccab Dbc1,blog0.40.5(0,1),clog80.4bc.故选B.2(2017南昌调研)a0,a1,函数f(x)loga|ax2x|在3,4上是增函数,则a的取值范围是()A.a1 Ba1C.a1答案A解析a0,a1,令g(x)|ax2x|x0,x作出其图象如右:函数f(x)loga|ax2x|在3,4上是增函数,若a1,则或解得a1

    13、;若0a1,则解得a.故选A.题型4指数函数、对数函数的综合应用(2018西安模拟)设方程log2xx0,logxx0的根分别为x1,x2,则()Ax1x21 B0x1x21C1x1x21x20,于是有log2x1x1x2logx2,得x1,所以0x1x21.故选B.设函数f(x)函数yff(x)1的零点个数为_考虑定义域,应用分类讨论法答案2解析方法技巧解指数函数与对数函数综合题的方法1首先考虑函数的定义域见典例2.2注意联想数形结合思想见典例1.冲关针对训练1(2018天津模拟)已知f(x)ln (x21),g(x)xm,若x10,3,x21,2,使得f(x1)g(x2),则实数m的取值范

    14、围为()A. B.C. D.答案B解析f(x)ln (x21)在0,3上单调递增,g(x)xm在1,2上单调递减,f(x)minf(0)0,g(x)ming(2)m.又x10,3,x21,2,使得f(x1)g(x2),f(x)ming(x)min,即m0,m.故选B.2设点P在曲线yex上,点Q在曲线yln (2x)上,则|PQ|的最小值为()A1ln 2 B.(1ln 2)C1ln 2 D.(1ln 2)答案B解析根据函数yex和函数yln 2x的图象可知两函数图象关于直线yx对称,故要求|PQ|的最小值可转化为求与直线yx平行且与两曲线相切的直线间的距离,设曲线yex上的切点为A(m,n)

    15、,则A到直线yx的距离的2倍即所求最小值因为yex,则em1,所以mln 2,切点A的坐标为(ln 2,1),切点到直线yx的距离为d,所以2d(1ln 2)故选B.1(2017北京高考)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与最接近的是()(参考数据:lg 30.48)A1033 B1053 C1073 D1093答案D解析由题意,lglglg 3361lg 1080361lg 380lg 103610.4880193.28.又lg 103333,lg 105353,lg 107373,lg 109393,故与最接近

    16、的是1093.故选D.2(2018山西模拟)函数yln sinx(0x)的大致图象是()答案C解析因为0x,所以00在区间(,2上恒成立且函数yx2ax3a在(,2上递减,则2且(2)2(2)a3a0,解得实数a的取值范围是4,4),故选D.4(2015福建高考)若函数f(x)(a0,且a1)的值域是4,),则实数a的取值范围是_答案(1,2解析当x2时,f(x)x6,f(x)在(,2上为减函数,f(x)4,)当x2时,若a(0,1),则f(x)3logax在(2,)上为减函数,f(x)(,3loga2),显然不满足题意,a1,此时f(x)在(2,)上为增函数,f(x)(3loga2,),由题

    17、意可知(3loga2,)4,),则3loga24,即loga21,1a2. 基础送分 提速狂刷练一、选择题1(2018安阳检测)若点(a,b)在ylg x图象上,a1,则下列点也在此图象上的是()A. B(10a,1b)C. D(a2,2b)答案D解析当xa2时,ylg a22lg a2b,所以点(a2,2b)在函数ylg x图象上故选D.2已知函数f(x)2log2x,x1,2,则函数yf(x)f(x2)的值域为()A4,5 B. C. D4,7答案B解析yf(x)f(x2)2log2x2log2x243log2x,注意到为使得yf(x)f(x2)有意义,必有1x22,得1x,从而4y.故选

    18、B.3(2018太原调研)已知函数f(x)xlog2x,若实数x0是方程f(x)0的解,且0x10,故排除D.故选B.5(2015湖南高考)设函数f(x)ln (1x)ln (1x),则f(x)是()A奇函数,且在(0,1)上是增函数B奇函数,且在(0,1)上是减函数C偶函数,且在(0,1)上是增函数D偶函数,且在(0,1)上是减函数答案A解析解法一:函数f(x)的定义域为(1,1),任取x(1,1),f(x)ln (1x)ln (1x)f(x),则f(x)是奇函数当x(0,1)时,f(x)0,所以f(x)在(0,1)上是增函数综上,故选A.解法二:同解法一知f(x)是奇函数当x(0,1)时,

    19、f(x)ln ln ln .y(x(0,1)是增函数,yln x也是增函数,f(x)在(0,1)上是增函数综上,故选A.6(2018包头模拟)已知函数f(x)log (x2axa)在上是增函数,则实数a的取值范围是()A1,) B.C. D(,1答案B解析f(x)log (x2axa)在上是增函数,说明内层函数(x)x2axa在上是减函数且(x)0成立,只需对称轴x且(x)min0,解得a,故选B.7(2017安徽安庆二模)已知函数yf(x)是定义在R上的偶函数,当x(,0时,f(x)为减函数,若af(20.3),bf(log4),cf(log25),则a,b,c的大小关系是()Aabc Bc

    20、ba Ccab Dacb答案B解析函数yf(x)是定义在R上的偶函数,当x(,0时,f(x)为减函数,f(x)在0,)上为增函数,bf(log4)f(2)f(2),120.32ba,故选B.8(2017广东模拟)已知函数f(x)(exex)x,f(log5x)f(logx)2f(1),则x的取值范围是()A. B1,5C. D.5,)答案C解析f(x)(exex)x,f(x)x(exex)(exex)xf(x)(xR),函数f(x)是偶函数f(x)(exex)x(exex)0在(0,)上恒成立函数f(x)在(0,)上单调递增f(log5x)f(logx)2f(1),2f(log5x)2f(1)

    21、,即f(log5x)f(1),|log5x|1,x5.故选C.9(2017河北五校质监)函数yloga(x3)1(a0,且a1)的图象恒过定点A,若点A在直线mxny20上,其中m0,n0,则的最小值为()A2 B4 C. D.答案D解析由函数yloga(x3)1(a0,且a1)的解析式知:当x2时,y1,所以点A的坐标为(2,1),又因为点A在直线mxny20上,所以2mn20,即2mn2,又m0,n0,所以22,当且仅当mn时等号成立,所以的最小值为,故选D.10(2017江西红色七校二模)已知函数f(x)ln ,若fff504(ab),则a2b2的最小值为()A6 B8 C9 D12答案

    22、B解析f(x)f(ex)ln ln ln e22,504(ab)fff(22016)2016,ab4,a2b28,当且仅当ab2时取等号a2b2的最小值为8.故选B.二、填空题11(2018禅城区月考)已知函数f(x)|lg x|,若0ab,且f(a)f(b),则2ab的取值范围是_答案2,)解析画出y|lg x|的图象如图:0ab,且f(a)f(b),|lg a|lg b|且0a1,lg alg b,ab1,2ab22.当2ab时等号成立,2ab2.12函数f(x)log2log(2x)的最小值为_答案解析显然x0,f(x)log2log(2x)log2xlog2(4x2)log2x(log

    23、242log2x)log2x(log2x)22,当且仅当x时,取“”,故f(x)min.13(2017山西质检)已知函数f(x)若f(x1)f(x2)f(x3)(x1,x2,x3互不相等),且x1x2x3的取值范围为(1,8),则实数m的值为_答案1解析作出f(x)的图象,如图所示,可令x1x2x3,则由图知点(x1,0),(x2,0)关于直线x对称,所以x1x21.又1x1x2x38,所以2x39.由f(x1)f(x2)f(x3)(x1,x2,x3互不相等),结合图象可知点A的坐标为(9,3),代入函数解析式,得3log2(9m),解得m1.14(2017辽宁沈阳一模)已知函数f(x)|log3x|,实数m,n满足0mn,且f(m)f(n),若f(x)在m2,n上的最大值为2,则_.答案9解析f(x)|log3x|,实数m,n满足0mn,且f(m)f(n),m10时,f(x)logx.(1)求函数f(x)的解析式;(2)解不等式f(x21)2.解16设x2,8时,函数f(x)loga(ax)loga(a2x)(a0且a1)的最大值是1,最小值是,求a的值解

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2019版高考数学(理)高分计划一轮高分讲义:第2章 函数、导数及其应用 2-6 对数与对数函数 WORD版含解析.docx
    链接地址:https://www.ketangku.com/wenku/file-572886.html
    相关资源 更多
  • 专题10.4 二项式定理(原卷版).docx专题10.4 二项式定理(原卷版).docx
  • 专题10.3 两个计数原理、排列与组合(解析版).docx专题10.3 两个计数原理、排列与组合(解析版).docx
  • 专题10.3二项式定理及其应用(原卷版).docx专题10.3二项式定理及其应用(原卷版).docx
  • 专题10.2 统计案例(解析版).docx专题10.2 统计案例(解析版).docx
  • 专题10.2 统计案例(原卷版).docx专题10.2 统计案例(原卷版).docx
  • 专题10.2排列组合问题(解析版).docx专题10.2排列组合问题(解析版).docx
  • 专题10.10 统计与概率(2021-2023年)真题训练(解析版).docx专题10.10 统计与概率(2021-2023年)真题训练(解析版).docx
  • 专题10.1 分类加法计数原理与分步乘法计数原理(原卷版).docx专题10.1 分类加法计数原理与分步乘法计数原理(原卷版).docx
  • 专题10.1 分类加法计数原理与分步乘法计数原理(解析版).docx专题10.1 分类加法计数原理与分步乘法计数原理(解析版).docx
  • 专题10-定语从句-冲刺2023年高考每天100道语法小题限时狂练.docx专题10-定语从句-冲刺2023年高考每天100道语法小题限时狂练.docx
  • 专题10-书面表达常用词汇和高级词汇 -2023年高考英语真题分项功能词汇专项突破.docx专题10-书面表达常用词汇和高级词汇 -2023年高考英语真题分项功能词汇专项突破.docx
  • 专题10-19天晨读 晚练四步轻松掌握高考英语核心词汇词形转换.docx专题10-19天晨读 晚练四步轻松掌握高考英语核心词汇词形转换.docx
  • 专题10-12 新民主主义革命时期(好题过关)(原卷版).docx专题10-12 新民主主义革命时期(好题过关)(原卷版).docx
  • 专题10--《2021届高考英语阅读理解完型填空600高频单词20练(基础练 拔高练)》(10).docx专题10--《2021届高考英语阅读理解完型填空600高频单词20练(基础练 拔高练)》(10).docx
  • 专题10 阅读还原(杭州专用)-2023年中考英语逆袭冲刺(三年真题热门考点提炼 名校最新模拟速递)专训(浙江省专用).docx专题10 阅读还原(杭州专用)-2023年中考英语逆袭冲刺(三年真题热门考点提炼 名校最新模拟速递)专训(浙江省专用).docx
  • 专题10 阅读表达-8年(2014-2021)苏州中考英语真题分析.docx专题10 阅读表达-8年(2014-2021)苏州中考英语真题分析.docx
  • 专题10 阅读理解应用文(解析版).docx专题10 阅读理解应用文(解析版).docx
  • 专题10 阅读理解应用文(原卷版).docx专题10 阅读理解应用文(原卷版).docx
  • 专题10 阅读理解之说明文(名校最新期末真题)-2022-2023学年七年级英语下学期期末复习查缺补漏冲刺满分(牛津译林版).docx专题10 阅读理解之说明文(名校最新期末真题)-2022-2023学年七年级英语下学期期末复习查缺补漏冲刺满分(牛津译林版).docx
  • 专题10 阅读理解之说明文-2021年高考英语题型大冲关(上海专用).docx专题10 阅读理解之说明文-2021年高考英语题型大冲关(上海专用).docx
  • 专题10 阅读理解之应用文(名校最新期末真题)-2022-2023学年八年级英语下学期期末考点大串讲(牛津译林版).docx专题10 阅读理解之应用文(名校最新期末真题)-2022-2023学年八年级英语下学期期末考点大串讲(牛津译林版).docx
  • 专题10 阅读理解之应用文-2024年高考英语二轮热点题型归纳与变式演练(新高考通用)(解析版).docx专题10 阅读理解之应用文-2024年高考英语二轮热点题型归纳与变式演练(新高考通用)(解析版).docx
  • 专题10 阅读理解20篇(名校最新期末真题)-2021-2022学年八年级英语下学期期末复习查缺补漏冲刺满分(人教版).docx专题10 阅读理解20篇(名校最新期末真题)-2021-2022学年八年级英语下学期期末复习查缺补漏冲刺满分(人教版).docx
  • 专题10 阅读填表(5空)-冲刺2022年中考英语必考题型终极押题(江苏通用).docx专题10 阅读填表(5空)-冲刺2022年中考英语必考题型终极押题(江苏通用).docx
  • 专题10 阅读回答问题10篇-2023届九年级英语名校真题分类汇编(江苏专用).docx专题10 阅读回答问题10篇-2023届九年级英语名校真题分类汇编(江苏专用).docx
  • 专题10 阅读回答问题-备战2022中考英语全国名校最新模拟试题分类汇编.docx专题10 阅读回答问题-备战2022中考英语全国名校最新模拟试题分类汇编.docx
  • 专题10 阅读回答问题-备战2022中考英语全国名校最新模拟试题分类汇编(1).docx专题10 阅读回答问题-备战2022中考英语全国名校最新模拟试题分类汇编(1).docx
  • 专题10 问鼎中考宾语从句在手-【口袋书】2022年中考英语背诵手册(牛津译林版).docx专题10 问鼎中考宾语从句在手-【口袋书】2022年中考英语背诵手册(牛津译林版).docx
  • 专题10 透过语境巧记高考英语3500词.docx专题10 透过语境巧记高考英语3500词.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1