2020-2022年高考数学真题分专题训练 专题05 立体几何(选择题、填空题)(理科专用)(教师版含解析).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020-2022年高考数学真题分专题训练 专题05 立体几何选择题、填空题理科专用教师版含解析 2020 2022 年高 数学 真题分 专题 训练 05 立体几何 选择题 填空 理科 专用
- 资源描述:
-
1、三年专题05 立体几何(选择题、填空题)(理科专用)1【2022年新高考1卷】南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m时,相应水面的面积为1400km2;水位为海拔1575m时,相应水面的面积为1800km2,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m上升到1575m时,增加的水量约为(72.65)()A1.0109m3B1.2109m3C1.4109m3D1.6109m3【答案】C【解析】【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出【详解】依题意可知棱台的高为MN=157.5-148.5=
2、9(m),所以增加的水量即为棱台的体积V棱台上底面积S=140.0km2=140106m2,下底面积S=180.0km2=180106m2,V=13hS+S+SS=139140106+180106+1401801012=3320+60710696+182.65107=1.4371091.4109(m3)故选:C2【2022年新高考1卷】已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为36,且3l33,则该正四棱锥体积的取值范围是()A18,814B274,814C274,643D18,27【答案】C【解析】【分析】设正四棱锥的高为h,由球的截面性质列方程求出正四棱锥的底面边长与
3、高的关系,由此确定正四棱锥体积的取值范围.【详解】 球的体积为36,所以球的半径R=3,设正四棱锥的底面边长为2a,高为h,则l2=2a2+h2,32=2a2+(3-h)2,所以6h=l2,2a2=l2-h2所以正四棱锥的体积V=13Sh=134a2h=23(l2-l436)l26=19l4-l636,所以V=194l3-l56=19l324-l26,当3l26时,V0,当26l33时,V0,所以当l=26时,正四棱锥的体积V取最大值,最大值为643,又l=3时,V=274,l=33时,V=814,所以正四棱锥的体积V的最小值为274,所以该正四棱锥体积的取值范围是274,643.故选:C.3
4、【2022年新高考2卷】已知正三棱台的高为1,上、下底面边长分别为33和43,其顶点都在同一球面上,则该球的表面积为()A100B128C144D192【答案】A【解析】【分析】根据题意可求出正三棱台上下底面所在圆面的半径r1,r2,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积【详解】设正三棱台上下底面所在圆面的半径r1,r2,所以2r1=33sin60,2r2=43sin60,即r1=3,r2=4,设球心到上下底面的距离分别为d1,d2,球的半径为R,所以d1=R2-9,d2=R2-16,故d1-d2=1或d1+d2=1,即R2-9-R2-16=1或R
5、2-9+R2-16=1,解得R2=25符合题意,所以球的表面积为S=4R2=100故选:A4【2021年甲卷理科】2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m),三角高程测量法是珠峰高程测量方法之一如图是三角高程测量法的一个示意图,现有A,B,C三点,且A,B,C在同一水平面上的投影满足,由C点测得B点的仰角为,与的差为100;由B点测得A点的仰角为,则A,C两点到水平面的高度差约为()()A346B373C446D473【答案】B【解析】【分析】通过做辅助线,将已知所求量转化到一个三角形中,借助正弦定理,求得,进而得到答案【详解】过作,过作,故,由题
6、,易知为等腰直角三角形,所以所以因为,所以在中,由正弦定理得:,而,所以所以故选:B【点睛】本题关键点在于如何正确将的长度通过作辅助线的方式转化为5【2021年甲卷理科】已如A,B,C是半径为1的球O的球面上的三个点,且,则三棱锥的体积为()ABCD【答案】A【解析】【分析】由题可得为等腰直角三角形,得出外接圆的半径,则可求得到平面的距离,进而求得体积.【详解】,为等腰直角三角形,则外接圆的半径为,又球的半径为1,设到平面的距离为,则,所以.故选:A.【点睛】关键点睛:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解.6【2021年新高考1卷】已知圆
7、锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()ABCD【答案】B【解析】【分析】设圆锥的母线长为,根据圆锥底面圆的周长等于扇形的弧长可求得的值,即为所求.【详解】设圆锥的母线长为,由于圆锥底面圆的周长等于扇形的弧长,则,解得.故选:B.7【2021年新高考2卷】正四棱台的上下底面的边长分别为2,4,侧棱长为2,则其体积为()ABCD【答案】D【解析】【分析】由四棱台的几何特征算出该几何体的高及上下底面面积,再由棱台的体积公式即可得解.【详解】作出图形,连接该正四棱台上下底面的中心,如图,因为该四棱台上下底面边长分别为2,4,侧棱长为2,所以该棱台的高,下底面面积,上底面面积,所
8、以该棱台的体积.故选:D.8【2020年新课标1卷理科】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()ABCD【答案】C【解析】【分析】设,利用得到关于的方程,解方程即可得到答案.【详解】如图,设,则,由题意,即,化简得,解得(负值舍去).故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.9【2020年新课标1卷理科】已知为球的球面上的三个点,为的外接圆,若的面积为,则球的表面积为()ABCD【答案】A【解析】
9、【分析】由已知可得等边的外接圆半径,进而求出其边长,得出的值,根据球的截面性质,求出球的半径,即可得出结论.【详解】设圆半径为,球的半径为,依题意,得,为等边三角形,由正弦定理可得,根据球的截面性质平面,球的表面积.故选:A【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.10【2020年新课标2卷理科】如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为,在俯视图中对应的点为,则该端点在侧视图中对应的点为()ABCD【答案】A【解析】【分析】根据三视图,画出多面体立体图形,即可求得点在侧视图中对应的点.【详解】根据三视图,画出多面体立
10、体图形,上的点在正视图中都对应点M,直线上的点在俯视图中对应的点为N,在正视图中对应,在俯视图中对应的点是,线段,上的所有点在侧试图中都对应,点在侧视图中对应的点为.故选:A【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.11【2020年新课标2卷理科】已知ABC是面积为的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16,则O到平面ABC的距离为()ABC1D【答案】C【解析】【分析】根据球的表面积和的面积可求得球的半径和外接圆半径,由球的性质可知所求距离.【详解】设球的半径为,则,解
11、得:.设外接圆半径为,边长为, 是面积为的等边三角形,解得:,球心到平面的距离.故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.12【2020年新课标3卷理科】下图为某几何体的三视图,则该几何体的表面积是()A6+4B4+4C6+2D4+2【答案】C【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:根据勾股定理可得:是边长为的等边三角形根据三角形面
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-583905.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
四年级下册英语课件-Unit2 I'm Cooking in the Kitchen partB|陕旅版 (共22张PPT).ppt
