2020高考文科数学(人教A版)总复习练习:高考大题专项3 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020高考文科数学人教A版总复习练习:高考大题专项3 WORD版含解析 2020 高考 文科 数学 人教 复习 练习 专项 WORD 解析
- 资源描述:
-
1、高考大题专项三高考中的数列 1.(2018山西吕梁一模,17)已知an是首项为1的等比数列,数列bn满足b1=2,b2=5,且anbn+1=anbn+an+1.(1)求数列an的通项公式;(2)求数列bn的前n项和.2.(2018福建龙岩4月质检,17)已知正项等比数列an的前n项和为Sn,且Sn=2an-1(nN*).(1)求数列an的通项公式;(2)若bn=lg an,求数列an+bn的前n项和Tn.3.(2018北京海淀期末,15)已知等差数列an的前n项和Sn,且a2=5,S3=a7.(1)数列an的通项公式;(2)若bn=2an,求数列an+bn的前n项和.4.(2018河北唐山一模
2、,17)已知数列an为单调递增数列,Sn为其前n项和,2Sn=an2+n.(1)求an的通项公式;(2)若bn=an+22n+1anan+1,Tn为数列bn的前n项和,证明:Tn12.5.(2018湖南衡阳二模,17)等差数列an中,a3=1,a7=9,Sn为等比数列bn的前n项和,且b1=2,若4S1,3S2,2S3成等差数列.(1)求数列an,bn的通项公式;(2)设cn=|an|bn,求数列cn的前n项和Tn.6.已知数列an的前n项和为Sn,Sn=(m+1)-man对任意的nN*都成立,其中m为常数,且m-1.(1)求证:数列an是等比数列;(2)记数列an的公比为q,设q=f(m),
3、若数列bn满足b1=a1,bn=f(bn-1)(n2,nN*).求证:数列1bn是等差数列;(3)在(2)的条件下,设cn=bnbn+1,数列cn的前n项和为Tn,求证:Tn1.7.(2018宿州十三所中学期中,17)已知数列an的前n项和为Sn,并且满足a1=1,nan+1=Sn+n(n+1).(1)求数列an的通项公式;(2)若bn=an2n,数列bn的前n项和为Tn,求Tn;(3)在(2)的条件下,是否存在常数,使得数列Tn+an+2为等比数列?若存在,试求出;若不存在,说明理由.高考大题专项三高考中的数列1.解 (1)把n=1代入已知等式得a1b2=a1b1+a2,a2=a1b2-a1
4、b1=3a1.an是首项为1,公比为3的等比数列,即an=3n-1.(2)由已知得bn+1-bn=an+1an=3,bn是首项为2,公差为3的等差数列,其通项公式为bn=3n-1,Sn=n(b1+bn)2=n(2+3n-1)2=3n2+n2.2.解 (1)由Sn=2an-1(nN*),可得S1=2a1-1,a1=2a1-1,a1=1.又S2=2a2-1,a1+a2=2a2-1,a2=2.数列an是等比数列,公比q=a2a1=2,数列an的通项公式为an=2n-1.(2)由(1)知,bn=lg an=(n-1)lg 2,Tn=(b1+a1)+(b2+a2)+(bn+an)=(0+1)+(lg 2
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-594401.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
