2021-2022高中数学人教版选修2-2教案:1-3-3函数的最值与导数 (二) WORD版含答案.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021-2022高中数学人教版选修2-2教案:1-3-3函数的最值与导数 二 WORD版含答案 2021 2022 高中 学人 选修 教案 函数 导数 WORD 答案
- 资源描述:
-
1、课题:函数的最值与导数(1)课时:12课型:新授课教学目标:使学生理解函数的最大值和最小值的概念,掌握可导函数在闭区间上所有点(包括端点)处的函数中的最大(或最小)值必有的充分条件;使学生掌握用导数求函数的极值及最值的方法和步骤 教学重点:利用导数求函数的最大值和最小值的方法教学难点:函数的最大值、最小值与函数的极大值和极小值的区别与联系教学过程:一创设情景我们知道,极值反映的是函数在某一点附近的局部性质,而不是函数在整个定义域内的性质也就是说,如果是函数的极大(小)值点,那么在点附近找不到比更大(小)的值但是,在解决实际问题或研究函数的性质时,我们更关心函数在某个区间上,哪个至最大,哪个值最
2、小如果是函数的最大(小)值,那么不小(大)于函数在相应区间上的所有函数值二新课讲授观察图中一个定义在闭区间上的函数的图象图中与是极小值,是极大值函数在上的最大值是,最小值是1结论:一般地,在闭区间上函数的图像是一条连续不断的曲线,那么函数在上必有最大值与最小值说明:如果在某一区间上函数的图像是一条连续不断的曲线,则称函数在这个区间上连续(可以不给学生讲)给定函数的区间必须是闭区间,在开区间内连续的函数不一定有最大值与最小值如函数在内连续,但没有最大值与最小值;在闭区间上的每一点必须连续,即函数图像没有间断,函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件(可以不给学生讲)
3、2“最值”与“极值”的区别和联系最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一;函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值3利用导数求函数的最值步骤:由上面函数的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了一般地,求函数在上的最大值与最小值的步骤如下: 在内的极值;将的各极值与端点处的函数值、比较,其中最大的一个是最大值,最小的一个是最小值,得出函数在上的最值三典例分析例1(课本例5)求在的最大值与最小值解: 由例4可知,在上,当时,有极小值,并且极小值为,又由于,因此,函数在的最大值是4,最小值是上述结论可以从函数在上的图象得到直观验证
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-606480.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
