52、阿基米德折弦定理的四种常规证法.pdf
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 52 阿基米德 定理 常规
- 资源描述:
-
1、阿基米德折弦定理的四种常见证法Justin 深圳平面几何内容在整个初中数学知识中占有很重要第位,无论是中考还是平时阶段检测,往往会在几何题目的设置上体现选拔性。更有人说:“初中数学学得好不好,关键看几何好不好”。这些虽然仅仅是一些说法而已,但也不无它的道理。平面几何的确是考察学生的一个很重要的方面,几何学习的关键主要是掌握作辅助线的技巧。而这些技巧也并非一朝一夕就能掌握的,需要长时间的积累,总结,并应用才能较好掌握。在整个初中范围内,圆作为一个独立的章节更显现它的重要,并以综合难度大,辅助线的作法较多著称。下面就以“阿基米德折弦定理”的证明为例来浅谈本人对圆的学习心得。问题:已知 M 为弧 A
2、C 的中点,B 为弧 AM 上任意一点,且 MDBC 于 D.求证:AB+BD=DC证法一:(补短法)如图:延长 DB 至 F,使 BF=BAM 为的中点AM=MC,MAC=MCA-又,MC=MAMBC=MAC-又MBC+MBF=180-由 M,B,A,C 四点共圆MCA+MBA=180-由可得:MBA=MBF在MBF 与MBA 中:MBMBMBFMBABABFMBF MBA(SAS)MF=MA,又MC=MAMF=MC又MDCFDF=DCFB+BD=DC又BF=BAAB+BD=DC(证毕)证法二:(截长法)如图:在 CD 上截取 DB=DGMDBGMB=MGMBG=MGB-又,MBG=MAC又
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
