分享
分享赚钱 收藏 举报 版权申诉 / 28

类型2022-2023学年度人教版八年级数学上册第十三章轴对称综合训练试题(含答案解析版).docx

  • 上传人:a****
  • 文档编号:641817
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:28
  • 大小:631.36KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 度人 八年 级数 上册 第十三 轴对称 综合 训练 试题 答案 解析
    资源描述:

    1、人教版八年级数学上册第十三章轴对称综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在下列命题中,正确的是()A一组对边平行的四边形是平行四边形B有一个角是直角的四边形是矩形C有一组邻边相等的四边形

    2、是菱形D对角线互相垂直平分的四边形是菱形2、如图,ABC和ECD都是等腰直角三角形,ABC的顶点A在ECD的斜边DE上下列结论:ACEBCD;DABACE;AE+ACCD;ABD是直角三角形其中正确的有()A1个B2个C3个D4个3、已知在ABC中,点P在三角形内部,点P到三个顶点的距离相等,则点P是()A三条角平分线的交点B三条高线的交点C三条中线的交点D三条边垂直平分线的交点4、观察下列作图痕迹,所作线段为的角平分线的是()ABCD5、下列黑体字中,属于轴对称图形的是()A善B勤C健D朴6、如图,ABC是边长为4的等边三角形,点P在AB上,过点P作PEAC,垂足为E,延长BC至点Q,使CQ

    3、PA,连接PQ交AC于点D,则DE的长为()A1B1.8C2D2.57、已知点P(2021,2021),则点P关于x轴对称的点的坐标是()A(2021,2021)B(2021,2021)C(2021,2021)D(2021,2021)8、如图,在ABC 中,AB=AC,C=70,ABC与ABC 关于直线 EF对称,CAF=10,连接 BB,则ABB的度数是()A30B35C40D459、下列命题是假命题的是()A同旁内角互补,两直线平行B线段垂直平分线上的点到线段两个端点的距离相等C相等的角是对顶角D角是轴对称图形10、如图,将ABCD沿对角线AC折叠,使点B落在B处,若1=2=44,则B为(

    4、)A66B104C114D124第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,长方形OABC的边OA 在x轴上,OC在y轴上,OA=1,OC=2,对角线 AC的垂直平分线交AB 于点E,交AC于点D若y轴上有一点P(不与点C重合),能使AEP是以为 AE 为腰的等腰三角形,则点 P的坐标为_2、如图,在ABC中,DE是BC的垂直平分线,垂足为E,交AC于点D,若AB=6,AC=9,则ABD的周长是_.3、如图,在ABC中,C90,DE是AB的垂直平分线,AD恰好平分BAC,若DE1,则BC的长是_4、如图,中,D,E分别是AC,AB上的点,B

    5、D与CE交于点O.给出下列三个条件:EBODCO;BEOCDO;BECD.上述三个条件中,哪两个条件可判定是等腰三角形(用序号写出一种情形):_ 5、如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边ABC和等边CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ则下列结论:ADBE;PQAE;APBQ;DEDP其中正确的有_(填序号)三、解答题(5小题,每小题10分,共计50分)1、如图 AB=AC,CDAB于D,BEAC于E,BE与CD相交于点O(1)求证AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由2、如图,已知锐角中,(

    6、1)请尺规作图:作的BC边上的高AD;(不写作法,保留作图痕迹)(2)在(1)的条件下,若,则经过A,C,D三点的圆的半径_3、如图,已知AB=AC,AD=AE,BD和CE相交于点O(1)求证:ABDACE;(2)判断BOC的形状,并说明理由4、如图,在中,D为的中点(1)写出点D到三个顶点A、B、C的距离的关系(不要求证明)(2)如果点M、N分别在线段上移动,在移动中保持,请判断的形状,并证明你的结论5、如图,在ABC和DCB中,AD90,ACBD,AC与BD相交于点O,限用无刻度直尺完成以下作图:(1)在图1中作线段BC的中点P;(2)在图2中,在OB、OC上分别取点E、F,使EFBC-参

    7、考答案-一、单选题1、D【解析】【分析】分别利用矩形的判定方法、以及菱形的判定与性质和平行四边形的判定方法分析得出答案【详解】解:A、有一组对边平行且相等的四边形是平行四边形,错误;B、有一个角是直角的平行四边形是矩形,错误;C、有一组邻边相等的平行四边形是菱形,错误;D、对角线互相垂直平分的四边形是菱形,正确;故选:D【考点】本题主要考查了矩形的判定、以及菱形的判定与性质和平行四边形的判定,正确把握相关判定定理是解题关键2、C【解析】【分析】根据等腰直角三角形的性质得到CACB,CABCBA45,CDCE,ECDE45,则可根据“SAS”证明ACEBCD,于是可对进行判断;利用三角形外角性质

    8、得到DAB+BACE+ACE,加上CABE45,则可得对进行判断;利用CECD和三角形三边之间的关系可对进行判断;根据ACEBCD得到BDCE45,则可对进行判断【详解】ABC和ECD都是等腰直角三角形,CACB,CABCBA45,CDCE,ECDE45,ACE+ACDACD+BCD,ACEBCD,在ACE和BCD中,ACEBCD(SAS),所以正确;DACE+ACE,即DAB+BACE+ACE,而CABE45,DABACE,所以正确;AE+ACCE,CECD,AE+ACCD,所以错误;ACEBCD,BDCE45,CDE45,ADBADC+BDC45+4590,ADB为直角三角形,所以正确故选

    9、:C【考点】本题是考查了全等三角形的判定和性质,等腰直角三角形的性质,直角三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质和等腰直角三角形的性质是解题的关键3、D【解析】【分析】根据线段垂直平分线的性质解答即可【详解】解:在ABC中,三角形内部的点P到三个顶点的距离相等,点P是三条边垂直平分线的交点,故选:D【考点】本题考查了线段垂直平分线的性质,熟练掌握线段垂直平分线上的点到线段的两个端点的距离相等是解答的关键4、C【解析】【分析】根据角平分线画法逐一进行判断即可【详解】:所作线段为AB边上的高,选项错误;B:做图痕迹为AB边上的中垂线,CD为AB边上的中线,选项错误;C:CD为的角

    10、平分线,满足题意。D:所作线段为AB边上的高,选项错误故选:.【考点】本题考查点到直线距离的画法,角平分线的画法,中垂线的画法,能够区别彼此之间的不同是解题切入点5、A【解析】【分析】轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形,根据轴对称图形的定义可得答案.【详解】解:由轴对称图形的定义可得:善是轴对称图形,勤,健,朴三个字都不是轴对称图形,故符合题意,不符合题意,故选:【考点】本题考查的是轴对称图形的含义,轴对称图形的识别,掌握定义,确定对称轴是解题的关键.6、C【解析】【分析】过作的平行线交于,通过证明,得,再由是等边三角形,即可得出【详解】解

    11、:过作的平行线交于,是等边三角形,是等边三角形,CQPA,在中和中,于,是等边三角形,故选:C【考点】本题主要考查了等边三角形的判定与性质,全等三角形的判定与性质,作辅助线构造全等三角形是解题的关键7、C【解析】【分析】直接利用关于x轴对称点的性质:横坐标相同,纵坐标互为相反数进而得出答案【详解】解:点P(2021,2021),点P关于x轴对称的点的坐标是(2021,2021)故选:C【考点】此题考查关于x轴、y轴对称的点的坐标,熟记关于轴对称坐标的特点是解题的关键8、C【解析】【分析】由轴对称图形的性质可得BACBAC,进而结合三角形内角和定理即可得出答案【详解】如图,连接 BB,ABC与A

    12、BC 关于直线 EF 对称,BACBAC,AB=AC,C=70,ABC=ACB=ABC=70,BAC=BAC=40,CAF=10,CAF=10,BAB=40+10+10+40=100,ABB=ABB=40,故选C【考点】本题考查了轴对称图形的性质以及等腰三角形的性质,正确得出BAC的度数是解题关键9、C【解析】【分析】根据平行线、垂直平分线、对顶角、轴对称图形的性质,逐个分析,即可得到答案【详解】同旁内角互补,则两直线平行,故A正确;线段垂直平分线上的点到线段两个端点的距离相等,故B正确;由对顶角可得是相等的角;相等的角无法证明是对等角,故C错误;角是关于角的角平分线对称的图形,是轴对称图形,

    13、故D正确故选:C【考点】本题考查了平行线、垂直平分线、对顶角、轴对称图形、角平分线、命题的知识;解题的关键是熟练掌握平行线、垂直平分线、对顶角、轴对称图形、角平分线的性质,从而完成求解10、C【解析】【分析】根据平行四边形性质和折叠性质得BAC=ACD=BAC=1,再根据三角形内角和定理可得.【详解】四边形ABCD是平行四边形,ABCD,ACD=BAC,由折叠的性质得:BAC=BAC,BAC=ACD=BAC=1=22,B=180-2-BAC=180-44-22=114,故选C【考点】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出BA

    14、C的度数是解决问题的关键二、填空题1、,或【解析】【分析】设AE=m,根据勾股定理求出m的值,得到点E(1,),设点P坐标为(0,y),根据勾股定理列出方程,即可得到答案【详解】对角线 AC的垂直平分线交AB 于点E,AE=CE,OA=1,OC=2,AB=OC=2,BC=OA=1,设AE=m,则BE=2-m,CE=m,在RtBCE中,BE2+ BC2=CE2,即:(2-m)2+12=m2,解得:m=,E(1,),设点P坐标为(0,y),AEP是以为 AE 为腰的等腰三角形,当AP=AE,则(1-0)2+(0-y)2= (1-1)2+(0-)2,解得:y=,当EP=AE,则(1-0)2+(-y)

    15、2= (1-1)2+(0-)2,解得:y=,点 P的坐标为,故答案是:,【考点】本题主要考查等腰三角形的定义,勾股定理,矩形的性质,垂直平分线的性质,掌握勾股定理,列出方程,是解题的关键2、15【解析】【分析】根据线段的垂直平分线的性质得到DB=DC,根据三角形的周长公式计算即可【详解】解:DE是BC的垂直平分线,DB=DC,ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=15,故答案为15【考点】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键3、3【解析】【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得ADBD,再

    16、根据等边对等角的性质求出DABB,然后根据角平分线的定义与直角三角形两锐角互余求出B30,再根据直角三角形30角所对的直角边等于斜边的一半求出BD,然后求解即可【详解】解:AD平分BAC,且DEAB,C90,CDDE1,DE是AB的垂直平分线,ADBD,BDAB,DABCAD,CADDABB,C90,CAD+DAB+B90,B30,BD2DE2,BCBD+CD1+23,故答案为3【考点】本题考查了角平分线的定义和性质,线段垂直平分线上的点到线段两端点的距离相等的性质,直角三角形30角所对的直角边等于斜边的一半的性质,属于基础题,熟记性质是解题的关键4、或【解析】【分析】已知条件,先证BEOCD

    17、O,再证明ABCACB最后得到ABC是等腰三角形;已知条件可证明BEOCDO,再证明ABC是等腰三角形.【详解】解:或.由证明ABC是等腰三角形.在BEO和CDO中,EBODCO,EOBDOC,BECD.BEOCDO(AAS),BOCO,OBCOCB,EBOOBCDCOOCB,即ABCACB,ABAC. 因此ABC是等腰三角形.由证明ABC是等腰三角形.在BEO和CDO中,EOBDOC,BEOCDO,BECD,BEOCDO(AAS),BOCO,OBCOCB,EBOOBCDCOOCB,即ABCACB,ABAC.ABC是等腰三角形.故答案为:或.【考点】本题考查了全等三角形的判定与性质、等腰三角形

    18、的判定;其中掌握用“AAS”判定两个三角形全等和用“等角对等边”判定三角形为等腰三角形是解决本题的关键5、【解析】【分析】根据等边三角形的三边都相等,三个角都是60,可以证明ACD与BCE全等,根据全等三角形对应边相等可得ADBE,所以正确,对应角相等可得CADCBE,然后证明ACP与BCQ全等,根据全等三角形对应边相等可得PCPQ,从而得到CPQ是等边三角形,再根据等腰三角形的性质可以找出相等的角,从而证明PQAE,所以正确;根据全等三角形对应边相等可以推出APBQ,所以正确,根据可推出DPEQ,再根据DEQ的角度关系DEDP【详解】解:等边ABC和等边CDE,ACBC,CDCE,ACBEC

    19、D60,180ECD180ACB,即ACDBCE,在ACD与BCE中, ,ACDBCE(SAS),ADBE,故小题正确;ACDBCE(已证),CADCBE,ACBECD60(已证),BCQ18060260,ACBBCQ60,在ACP与BCQ中, ,ACPBCQ(ASA),APBQ,故小题正确;PCQC,PCQ是等边三角形,CPQ60,ACBCPQ,PQAE,故小题正确;ADBE,APBQ,ADAPBEBQ,即DPQE,DQEECQ+CEQ60+CEQ,CDE60,DQECDE,故小题错误综上所述,正确的是故答案为:【考点】本题考查了等边三角形的性质,全等三角形的判定与性质,以及平行线的判定,需

    20、要多次证明三角形全等,综合性较强,但难度不是很大,是热点题目,仔细分析图形是解题的关键三、解答题1、(1)证明见解析;(2)互相垂直,证明见解析【解析】【分析】(1)根据AAS推出ACDABE,根据全等三角形的性质得出即可;(2)证RtADORtAEO,推出DAO=EAO,根据等腰三角形的性质推出即可【详解】(1)证明:CDAB,BEAC,ADC=AEB=90,ACD和ABE中,ACDABE(AAS),AD=AE(2)猜想:OABC证明:连接OA、BC,CDAB,BEAC,ADC=AEB=90在RtADO和RtAEO中,RtADORtAEO(HL)DAO=EAO,又AB=AC,OABC2、 (

    21、1)见解析(2)【解析】【分析】(1)分别以B、C为圆心,大于BC为半径作弧,两弧交于点E,连接AE交BC于D,则AD就是ABC的高;(2)由ADBC可知,AC是经过A,C,D三点的圆的直径,根据垂径定理可知CD=BC=4,由勾股定理可求AC的长,进而可求半径(1)解:作图如图:(2)解:AB=AC,ADBCAD是ABC的中线BD=CD= AC= ADC=90AC是经过A,C、D三点的圆的直径半径r= 故答案为:【考点】本题考查了基本作图,等腰三角形的性质-“三线合一”,解题的关键是熟知等腰三角形的“三线合一”性质3、(1)见解析;(2)等腰三角形,理由见解析【解析】【分析】(1)由“SAS”

    22、可证ABDACE;(2)由全等三角形的性质可得ABD=ACE,由等腰三角形的性质可得ABC=ACB,可求OBC=OCB,可得BO=CO,即可得结论【详解】证明:(1)AB=AC,BAD=CAE,AD=AE,ABDACE(SAS);(2)BOC是等腰三角形,理由如下:ABDACE,ABD=ACE,AB=AC,ABC=ACB,ABCABD=ACBACE,OBC=OCB,BO=CO,BOC是等腰三角形【考点】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟记相关定理是解题关键4、(1);(2)为等腰直角三角形,理由见解析【解析】【分析】(1)根据直角三角形的性质可知CD=BD=AD;(2)连接

    23、AD,可证明,则可证得DM=DN,再利用,可证明,据此解题【详解】解:(1)中,为BC的中点,即点D到三个顶点的距离相等;(2)为等腰直角三角形,理由如下,证明:连接AD,与中,为等腰直角三角形【考点】本题考查等腰直角三角形、全等三角形的判定与性质、直角三角形斜边的中线等于斜边的一半等知识,是重要考点,掌握相关知识是解题关键5、(1)见解析;(2)见解析.【解析】【分析】(1)延长BA和CD,它们相交于点Q,然后延长QO交BC于P,则PB=PC,根据线段垂直平分线的逆定理可证明;(2)连结AP交OB于E,连结DP交OC于F,则EFBC分别证明BEPCFP,BEPCFP可得APB=DPC和PEF

    24、=PFE,根据三角形内角和定理和平角的定义可得APB=PEF,即可证明EF/BC.【详解】解:(1)如图1,点P为所作,理由如下:AD90,ACBD,BC=CB,ABCDCBABC=DCB,ACB=DBCQB=QC,OB=OCQ,O在BC的垂直平分线上,延长QO交BC于P,就有P为线段BC的中点;(2)如图2,EF为所作理由如下:ABCDCBAB=DC,又ABC=DCB,BP=PCABPDCPAPB=DPC又DBC=ACB,BP=PCBEPCFPPE=PFPEF=PFE,APB+DPC+APD=180PEF+PFE+APD=180APB=PEFEF/BC.【考点】本题考查作图复杂作图,等腰三角形的性质,线段垂直平分线的逆定理,平行线的判定定理,全等三角形的判定与性质. 掌握相关定理并能熟练运用是解决此题的关键.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度人教版八年级数学上册第十三章轴对称综合训练试题(含答案解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-641817.html
    相关资源 更多
  • 专题13确定圆的条件、直线和圆的位置关系 (5个知识点8种题型)(解析版).docx专题13确定圆的条件、直线和圆的位置关系 (5个知识点8种题型)(解析版).docx
  • 专题13确定圆的条件、直线和圆的位置关系 (5个知识点8种题型)(原卷版).docx专题13确定圆的条件、直线和圆的位置关系 (5个知识点8种题型)(原卷版).docx
  • 专题13求解摩擦力(知识点复习 例题讲解 过关练习)-备战2023年中考物理一轮复习考点帮 (解析版).docx专题13求解摩擦力(知识点复习 例题讲解 过关练习)-备战2023年中考物理一轮复习考点帮 (解析版).docx
  • 专题13求解摩擦力(知识点复习 例题讲解 过关练习)-备战2023年中考物理一轮复习考点帮 (原卷版).docx专题13求解摩擦力(知识点复习 例题讲解 过关练习)-备战2023年中考物理一轮复习考点帮 (原卷版).docx
  • 专题13新定义与规律探究题(真题21模拟21)-备战2023年中考数学历年真题 1年模拟新题分项详解(重庆专用)【解析版】.docx专题13新定义与规律探究题(真题21模拟21)-备战2023年中考数学历年真题 1年模拟新题分项详解(重庆专用)【解析版】.docx
  • 专题13新定义与规律探究题(真题21模拟21)-备战2023年中考数学历年真题 1年模拟新题分项详解(重庆专用)【原卷版】.docx专题13新定义与规律探究题(真题21模拟21)-备战2023年中考数学历年真题 1年模拟新题分项详解(重庆专用)【原卷版】.docx
  • 专题13整式运算——天津市2023年初三各区数学模拟考试题型分类汇编.docx专题13整式运算——天津市2023年初三各区数学模拟考试题型分类汇编.docx
  • 专题13平衡中的临界和极值问题.docx专题13平衡中的临界和极值问题.docx
  • 专题13平行线之猪脚模型(M模型)-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(解析版).docx专题13平行线之猪脚模型(M模型)-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(解析版).docx
  • 专题13平行线之猪脚模型(M模型)-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(原卷版).docx专题13平行线之猪脚模型(M模型)-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(原卷版).docx
  • 专题13带电粒子在有界匀强磁场中的运动(解析版).docx专题13带电粒子在有界匀强磁场中的运动(解析版).docx
  • 专题13带电粒子在有界匀强磁场中的运动(原卷版).docx专题13带电粒子在有界匀强磁场中的运动(原卷版).docx
  • 专题13寒假成果评价卷 (测试范围:一次函数、代数方程)(解析版).docx专题13寒假成果评价卷 (测试范围:一次函数、代数方程)(解析版).docx
  • 专题13寒假成果评价卷 (测试范围:一次函数、代数方程)(原卷版).docx专题13寒假成果评价卷 (测试范围:一次函数、代数方程)(原卷版).docx
  • 专题13二次函数图象性质(选填50题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第02期).docx专题13二次函数图象性质(选填50题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第02期).docx
  • 专题13二次函数图象性质(选填50题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第02期).docx专题13二次函数图象性质(选填50题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第02期).docx
  • 专题13二次函数图象性质与应用(共38题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期).docx专题13二次函数图象性质与应用(共38题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期).docx
  • 专题13二次函数图象性质与应用(共38题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第01期).docx专题13二次函数图象性质与应用(共38题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第01期).docx
  • 专题13二次函数与胡不归型最值问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(解析版).docx专题13二次函数与胡不归型最值问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(解析版).docx
  • 专题13二次函数与胡不归型最值问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx专题13二次函数与胡不归型最值问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx
  • 专题13不等式B辑(教师版含解析)备战2021年高中数学联赛之1981-2020年高中数学联赛一试试题分专题训练.docx专题13不等式B辑(教师版含解析)备战2021年高中数学联赛之1981-2020年高中数学联赛一试试题分专题训练.docx
  • 专题13不等式B辑(学生版)备战2021年高中数学联赛之1981-2020年高中数学联赛一试试题分专题训练.docx专题13不等式B辑(学生版)备战2021年高中数学联赛之1981-2020年高中数学联赛一试试题分专题训练.docx
  • 专题13 实验:探究弹力和弹簧伸长的关系.docx专题13 实验:探究弹力和弹簧伸长的关系.docx
  • 专题13 二次函数的应用.docx专题13 二次函数的应用.docx
  • 专题13.Unit3写作与阅读(选择性必修第一册)答案全解全析.docx专题13.Unit3写作与阅读(选择性必修第一册)答案全解全析.docx
  • 专题13.9 三角形中的边角关系、命题与证明章末八大题型总结(拔尖篇)(沪科版)(解析版).docx专题13.9 三角形中的边角关系、命题与证明章末八大题型总结(拔尖篇)(沪科版)(解析版).docx
  • 专题13.9 三角形中的边角关系、命题与证明章末八大题型总结(拔尖篇)(沪科版)(原卷版).docx专题13.9 三角形中的边角关系、命题与证明章末八大题型总结(拔尖篇)(沪科版)(原卷版).docx
  • 专题13.8 三角形中的边角关系、命题与证明章末九大题型总结(培优篇)(沪科版)(解析版).docx专题13.8 三角形中的边角关系、命题与证明章末九大题型总结(培优篇)(沪科版)(解析版).docx
  • 专题13.8 三角形中的边角关系、命题与证明章末九大题型总结(培优篇)(沪科版)(原卷版).docx专题13.8 三角形中的边角关系、命题与证明章末九大题型总结(培优篇)(沪科版)(原卷版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1