分享
分享赚钱 收藏 举报 版权申诉 / 27

类型2022-2023学年期末强化人教版九年级数学上册期末专项测评试题 卷(Ⅰ)(含答案解析).docx

  • 上传人:a****
  • 文档编号:646226
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:27
  • 大小:733.56KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022-2023学年期末强化人教版九年级数学上册期末专项测评试题 卷含答案解析 2022 2023 学年 期末 强化 人教版 九年级 数学 上册 专项 测评 试题 答案 解析
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末专项测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、下列图形中,既是轴对称图形,又是中心对称图形的是()ABCD2、从

    2、下列命题中,随机抽取一个是真命题的概率是()(1)无理数都是无限小数;(2)因式分解;(3)棱长是的正方体的表面展开图的周长一定是;(4)弧长是,面积是的扇形的圆心角是ABCD13、关于的一元二次方程的两根应为()AB,CD4、下列说法正确的是()近似数精确到十分位;在,中,最小的是;如图所示,在数轴上点所表示的数为;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;如图,在内一点到这三条边的距离相等,则点是三个角平分线的交点A1B2C3D45、已知二次函数y = ax2 + bx + c(a0)的图象如图所示,则下列结论:4a + 2b + c 0;y随x

    3、的增大而增大;方程ax2 + bx + c = 0两根之和小于零;一次函数y = ax + bc的图象一定不过第二象限,其中正确的个数是()A4个B3个C2个D1个二、多选题(5小题,每小题4分,共计20分)1、已知点,下面的说法正确的是()A点与点关于轴对称,则点的坐标为 线 封 密 内 号学级年名姓 线 封 密 外 B点绕原点按顺时针方向旋转后到点,则点的坐标为C点与点关于原点中心对称,则点的坐标为D点先向上平移个单位,再向右平移个单位到点,则点的坐标为2、已知抛物线(,是常数,)经过点,当时,与其对应的函数值下列结论正确的是()ABCD关于的方程有两个不等的实数根3、两个关于的一元二次方

    4、程和,其中,是常数,且如果是方程的一个根,那么下列各数中,一定是方程的根的是()ABC2D-24、以图(以点O为圆心,半径为1的半圆)作为“基本图形”,分别经历如下变换能得到图的有()A只要向右平移1个单位B先以直线为对称轴进行翻折,再向右平移1个单位C先绕着点O旋转,再向右平移1个单位D绕着的中点旋转即可5、下列图形中,是中心对称图形的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、若点A(m,5)与点B(4,n)关于原点成中心对称,则mn_2、抛物线yax2+bx+c(a0)的部分图象如图所示,其与x轴的一个交点坐标为(3,0),对称轴为x1,则当y0

    5、时,x的取值范围是_3、将抛物线向上平移()个单位长度,k,平移后的抛物线与双曲线y(x0)交于点P(p,q),M(1,n),则下列结论正确的是_(写出所有正确结论的序号) 0p1; 1p1; qn; q2kk4、在平面直角坐标系中,已知和是抛物线上的两点,将抛物线的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为_5、如图,二次函数yax2+bx+c的图象经过点A(3,0),B(1,0),与y轴交于点C下列结 线 封 密 内 号学级年名姓 线 封 密 外 论:abc0;3ac0;当x0时,y随x的增大而增大;对于任意实数m,总有abam2bm其中正确的是 _(

    6、填写序号)四、解答题(5小题,每小题8分,共计40分)1、如图,二次函数的图象交轴于、两点,交轴于点,点的坐标为,顶点的坐标为求二次函数的解析式和直线的解析式;点是直线上的一个动点,过点作轴的垂线,交抛物线于点,当点在第一象限时,求线段长度的最大值;在抛物线上是否存在异于、的点,使中边上的高为?若存在求出点的坐标;若不存在请说明理由2、用适当的方法解方程:(1)(2)3、如图,抛物线ya(x2)2+3(a为常数且a0)与y轴交于点A(0,)(1)求该抛物线的解析式;(2)若直线ykx(k0)与抛物线有两个交点,交点的横坐标分别为x1,x2,当x12+x2210时,求k的值;(3)当4xm时,y

    7、有最大值,求m的值4、在“乡村振兴”行动中,某村办企业以,两种农作物为原料开发了一种有机产品,原料的单价是原料单价的1.5倍,若用900元收购原料会比用900元收购原料少生产该产品每盒需要原料和原料,每盒还需其他成本9元市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒 (1)求每盒产品的成本(成本原料费其他成本);(2)设每盒产品的售价是元(是整数),每天的利润是元,求关于的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过元(是大于60的常数,且是整数),直接写出每天的最大利润5、陕西某景区吸引了大量中外游客前来参观,如果游客过

    8、多,对进景区的游客健康检查、拥堵等问题会产生不利影响,但也要保证一定的门票收入,因此景区采取了涨浮门票价格的方法来控制旅游人数,在该方法实施过程中发现:每周旅游人数与票价之间存在着如图所示的一次函数关系在这种情况下,如果要保证每周3 000万元的门票收入,那么每周应限定旅游人数是多少万人?门票价格应是多少元? 线 封 密 内 号学级年名姓 线 封 密 外 -参考答案-一、单选题1、C【解析】【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解【详解】解:A是轴对称图形,不是中心对称图形,故本选项不符合题意;B既不是轴对称图形,又不是中心对称图形,故本选项不符合题意;C既是轴对称

    9、图形,又是中心对称图形,故本选项符合题意;D不是轴对称图形,是中心对称图形,故本选项不符合题意故选:C【考点】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合2、C【解析】【分析】分别判断各命题的真假,再利用概率公式求解.【详解】解:(1)无理数都是无限小数,是真命题,(2)因式分解,是真命题,(3)棱长是的正方体的表面展开图的周长一定是,是真命题,(4)设扇形半径为r,圆心角为n,弧长是,则=,则,面积是,则=,则360240,则,则n=360024=150,故扇形的圆心角是,是假命题,则随

    10、机抽取一个是真命题的概率是,故选C.【考点】本题考查了命题的真假,概率,扇形的弧长和面积,无理数,因式分解,正方体展开图,知识点较多,难度一般,解题的关键是运用所学知识判断各个命题的真假.3、B【解析】【分析】先把方程化为一般式,再计算判别式的值,然后利用求根公式解方程即可 线 封 密 内 号学级年名姓 线 封 密 外 【详解】x23ax+a2=0,=(3a)24a2=a2,x=.所以x1=a,x2=a.故答案选B.【考点】本题考查了解一元二次方程,解题的关键是根据公式法解一元二次方程.4、B【解析】【分析】根据近似数的精确度定义,可判断;根据实数的大小比较,可判断;根据点在数轴上所对应的实数

    11、,即可判断;根据反证法的概念,可判断;根据角平分线的性质,可判断【详解】近似数精确到十位,故本小题错误;,最小的是,故本小题正确;在数轴上点所表示的数为,故本小题错误;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角或三个钝角”,故本小题错误;在内一点到这三条边的距离相等,则点是三个角平分线的交点,故本小题正确故选B【考点】本题主要考查近似数的精确度定义,实数的大小比较,点在数轴上所对应的实数,反证法的概念,角平分线的性质,熟练掌握上述知识点,是解题的关键5、D【解析】【分析】根据函数的图象可知x=2时,函数值的正负性;并且可知与x轴有两个交点,即对应方程有两

    12、个实数根;函数的增减性需要找到其对称轴才知具体情况;由函数的图象还可知b、c的正负性,一次函数y=ax+bc所经过的象限进而可知正确选项【详解】当x=2时,y=4a+2b+c,对应的y值为正,即4a+2b+c0,故正确;因为抛物线开口向上,在对称轴左侧,y随x的增大而减小;在对称轴右侧,y随x的增大而增大,故错误;由二次函数y=ax2+bx+c(a0)的图象可知:函数图象与x轴有两个不同的交点,即对应方程有两个不相等的实数根,且正根的绝对值较大,方程ax2+bx+c=0两根之和大于零,故错误;由图象开口向上,知a0,与y轴交于负半轴,知c0,由对称轴,知b0,bc0,一次函数y=ax+bc的图

    13、象一定经过第二象限,故错误;综上,正确的个数为1个,故选:D【考点】本题考查了二次函数的图象与系数的关系以及一次函数的图象,利用了数形结合的思想,此类题涉及的知识面比较广,能正确观察图象是解本题的关键 线 封 密 内 号学级年名姓 线 封 密 外 二、多选题1、BD【解析】【分析】A、根据轴对称的性质判断即可; B、根据旋转变换的性质判断即可;C、根据中心对称的性质判断即可;D、根据平移变换的性质判断即可;【详解】A、点A与点B关于 轴对称,则点B的坐标为B(-2,-3),A选项错误,不符合题意;B、点绕原点按顺时针方向旋转后到点,则点的坐标为,B选项正确,符合题意;C、点与点关于原点中心对称

    14、,则点的坐标为B(2,-3),C选项错误,不符合题意;D、点先向上平移个单位,再向右平移个单位到点,则点的坐标为,D选项正确,符合题意;故选:BD【考点】本题考查平移变换,轴对称变换,中心对称,旋转变换等知识,解题的关键是熟练掌握平移变换,旋转变换,轴对称变换,中心对称的性质,属于常考题型2、BCD【解析】【分析】根据函数与点的关系,一元二次方程根的判别式,不等式的性质,逐一计算判断即可【详解】抛物线(是常数,)经过点(-1,-1),当时,与其对应的函数值,c=10,a-b+c= -1,4a-2b+c1,a-b= -2,2a-b0,2a-a-20,a20,b=a+20,abc0,故A错误;b=

    15、a+2,a2,c=1,故B正确;a+b+c=a+a+2+1=2a+3,a2,2a4,2a+34+37,即,故C正确;,=0,有两个不等的实数根,故D正确故选:BCD【考点】本题考查了二次函数的性质,一元二次方程根的判别式,不等式的基本性质,熟练掌握二次函数的性 线 封 密 内 号学级年名姓 线 封 密 外 质,灵活使用根的判别式,准确掌握不等式的基本性质是解题的关键3、AD【解析】【分析】利用方程根的定义去验证判断即可【详解】,是方程的一个根,是方程的一个根,是方程的一个根,即时方程的一个根.是方程的一个根,当x=时,是方程的根故选:A,D【考点】本题考查了一元二次方程根的定义即使得方程两边相

    16、等的未知数的值,正确理解定义是解题的关键4、BCD【解析】【分析】观察两个半圆的位置关系,再确定能否通过图象变换得到,以及旋转、平移的方法【详解】解:由图可知,图(1)先以直线AB为对称轴进行翻折,再向右平移1个单位,或先绕着点O旋转180,再向右平移1个单位,或绕着OB的中点旋转180即可得到图(2)故选BCD【考点】本题考查了旋转、轴对称、平移的性质关键是根据变换图形的位置关系,确定变换规律5、BD【解析】【分析】根据中心对称图形的定义旋转180后能够与原图形完全重合即是中心对称图形,进而判断得出答案【详解】解:A此图形旋转180后不能与原图形重合,此图形不是中心对称图形,故此选项不符合题

    17、意;B此图形旋转180后能与原图形重合,此图形是中心对称图形,故此选项符合题意;C此图形旋转180后不能与原图形重合,此图形不是中心对称图形,故此选项不合题意; 线 封 密 内 号学级年名姓 线 封 密 外 D此图形旋转180后能与原图形重合,此图形是中心对称图形,故此选项符合题意故选:BD【考点】本题考查的是中心对称图形的概念,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形三、填空题1、【解析】【分析】根据关于原点对称的点的坐标特征:关于原点对称的点,横纵坐标都互为相反数,进行求解即可【详解】解:点A(m,5)与点B(4,n)关于原点成中心

    18、对称,m=4,n=-5,m+n=-5+4=-1,故答案为:-1【考点】本题主要考查了关于原点对称点的坐标特征,代数式求值,熟知关于原点对称的点的坐标特征是解题的关键2、3x1【解析】【分析】根据抛物线与x轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x轴的另一个交点,再根据抛物线的增减性可求当y0时,x的取值范围【详解】解:抛物线yax2+bx+c(a0)与x轴的一个交点为(3,0),对称轴为x1,抛物线与x轴的另一个交点为(1,0),由图象可知,当y0时,x的取值范围是3x1故答案为:3x1【考点】本题考查了二次函数的性质和数形结合能力,熟练掌握并灵活运用是解题的关键3、#【解析】【

    19、分析】先画出函数图像,判断出当时抛物线和反比例函数图象上的点的纵坐标的关系,确定抛物线右支与反比例函数图象的交点个数,再利用抛物线的对称性与反比例函数的图象与性质直接判断即可【详解】解: 抛物线,该抛物线对称轴为,顶点坐标为(1,),将该抛物线向上平移()个单位长度,则顶点坐标为(1,),当时,反比例函数图象上点的坐标为(1,),如图所示,抛物线平移后的顶点纵坐标即为m,反比例函数上横坐标为1的点的纵坐标即为s,m-s=, 线 封 密 内 号学级年名姓 线 封 密 外 k,抛物线的右支与反比例函数图象只有一个交点,且该交点横坐标大于1;平移后的抛物线与双曲线y(x0)交于点P(p,q),M(1

    20、,n),点M为抛物线右支与反比例函数图象的交点,点P为抛物线左支与反比例函数图象的交点,由于反比例函数的图像在第一象限内y随x的增大而减小,且抛物线关于直线对称1p1;q2kk正确;故答案为:【考点】本题考查了抛物线与反比例函数的图像与性质,解题关键是弄清楚这两个交点分别位于抛物线的左支和右支上,再利用抛物线的轴对称性和反比例函数图像的增减性进行判断4、4【解析】【分析】通过A、B两点得出对称轴,再根据对称轴公式算出b,由此可得出二次函数表达式,从而算出最小值即可推出n的最小值【详解】A、B的纵坐标一样,A、B是对称的两点,对称轴,即,b=-4抛物线解析式为:抛物线顶点(2,-3)满足题意n的

    21、最小值为4,故答案为:4【考点】本题考查二次函数对称轴的性质,顶点式的变形及抛物线的平移,关键在于根据对称轴的性质从题意中判断出对称轴5、#【解析】【分析】根据抛物线的对称轴,开口方向,与轴的交点位置,即可判断,根据二次函数yax2+bx+c的图象经过点A(3,0),B(1,0),即可求得对称轴,以及当时,进而可以判断,根据顶点求得函数的最大值,即可判断【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:抛物线开口向下,对称轴,抛物线与轴交于正半轴,故正确,二次函数yax2+bx+c的图象经过点A(3,0),B(1,0),对称轴为,则,当,故不正确,由函数图象以及对称轴为,可知,当时,

    22、随的增大而增大,故不正确,对称轴为,则当时,取得最大值,对于任意实数m,总有,即,故正确故答案为:【考点】本题考查了二次函数图象的性质,数形结合是解题的关键四、解答题1、1y=-x2+2x+3,y=-x+3; 有最大值; 存在满足条件的点,其坐标为或【解析】【分析】可设抛物线解析式为顶点式,由点坐标可求得抛物线的解析式,则可求得点坐标,利用待定系数法可求得直线解析式;设出点坐标,从而可表示出的长度,利用二次函数的性质可求得其最大值;过作轴,交于点,过和于,可设出点坐标,表示出的长度,由条件可证得为等腰直角三角形,则可得到关于点坐标的方程,可求得点坐标【详解】解:抛物线的顶点的坐标为,可设抛物线

    23、解析式为,点在该抛物线的图象上,解得,抛物线解析式为,即,点在轴上,令可得,点坐标为,可设直线解析式为, 线 封 密 内 号学级年名姓 线 封 密 外 把点坐标代入可得,解得,直线解析式为;设点横坐标为,则,当时,有最大值;如图,过作轴交于点,交轴于点,作于,设,则,是等腰直角三角形,当中边上的高为时,即,当时,方程无实数根,当时,解得或,或,综上可知存在满足条件的点,其坐标为或【考点】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、等腰直角三角形的性质及方程思想等知识在中主要是待定系数法的考查,注意抛物线顶点式的应用,在中用点坐标表示出的长是解题的关键,在中构造等腰直角三角形求得的

    24、长是解题的关键本题考查知识点较多,综合性较强,难度适中2、 (1),;(2),【解析】【分析】将左边利用十字相乘法因式分解,继而可得两个关于的一元一次方程,分别求解即可得出答案;先移项,再将左边利用提公因式法因式分解,继而可得两个关于的一元一次方程,分别求解即可得出答案(1)解:, 线 封 密 内 号学级年名姓 线 封 密 外 ,则或,解得,所以,原方程的解为,;(2)解: ,则,或,解得,所以,原方程的解为,【考点】本题考查了一元二次方程的解法,熟练掌握和运用一元二次方程的解法是解决本题的关键3、(1);(2);(3)【解析】【分析】(1)把代入抛物线的解析式,解方程求解即可; (2)联立两

    25、个函数的解析式,消去 得:再利用根与系数的关系与可得关于的方程,解方程可得答案;(3)先求解抛物线的对称轴方程,分三种情况讨论,当 结合函数图象,利用函数的最大值列方程,再解方程即可得到答案.【详解】解:(1)把代入中, 抛物线的解析式为: (2)联立一次函数与抛物线的解析式得: 整理得: x1+x2=4-3k,x1x2=-3,x12+x22=(4-3k)2+6=10, 线 封 密 内 号学级年名姓 线 封 密 外 解得: (3)函数的对称轴为直线x=2,当m2时,当x=m时,y有最大值,=-(m-2)2+3,解得m=,m=-,当m2时,当x=2时,y有最大值,=3,m=,综上所述,m的值为-

    26、或【考点】本题考查的是利用待定系数法求解抛物线的解析式,抛物线与轴的交点坐标,一元二次方程根与系数的关系,二次函数的增减性,掌握数形结合的方法与分类讨论是解题的关键.4、(1)每盒产品的成本为30元(2);(3)当时,每天的最大利润为16000元;当时,每天的最大利润为元【解析】【分析】(1)设原料单价为元,则原料单价为元然后再根据“用900元收购原料会比用900元收购原料少”列分式方程求解即可;(2)直接根据“总利润=单件利润销售数量”列出解析式即可;(3)先确定的对称轴和开口方向,然后再根据二次函数的性质求最值即可【详解】解:(1)设原料单价为元,则原料单价为元依题意,得解得,经检验,是原

    27、方程的根每盒产品的成本为:(元)答:每盒产品的成本为30元(2);(3)抛物线的对称轴为=70,开口向下当时,a=70时有最大利润,此时w=16000,即每天的最大利润为16000元;当时,每天的最大利润为元【考点】本题主要考查了分式方程的应用、二次函数的应用等知识点,正确理解题意、列出分式方程和函数解析式成为解答本题的关键5、10万人、300元【解析】【分析】设门票价格为x元,每周旅游人数为y万人,根据题中的图中信息,利用待定系数法即可求解出每周旅游人数y与票价x之间存在一次函数关系,再根据题意列出一元二次方程即可求解【详解】解:设门票价格为x元,每周旅游人数为y万人, 线 封 密 内 号学级年名姓 线 封 密 外 每周旅游人数与票价之间存在一次函数关系,设一次函数为ykxb,则有,解得:,由题意得:,解得100,300当x100时,y30;当x300时,y10既要控制人数又要保证收入,每周应限定旅游人数是10万人,门票价格应是300元【考点】本题主要考查一次函数与一元二次方程的实际应用,根据等量关系,列出一次函数解析式和方程,是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年期末强化人教版九年级数学上册期末专项测评试题 卷(Ⅰ)(含答案解析).docx
    链接地址:https://www.ketangku.com/wenku/file-646226.html
    相关资源 更多
  • 人教版八年级上册15.2.3整数指数幂.docx人教版八年级上册15.2.3整数指数幂.docx
  • 人教版八年级上册15.2.2 分式的混合运算.docx人教版八年级上册15.2.2 分式的混合运算.docx
  • 人教版八年级上册15.2.2 分式的化简.docx人教版八年级上册15.2.2 分式的化简.docx
  • 人教版八年级上册15.2.2 分式的加减(二).docx人教版八年级上册15.2.2 分式的加减(二).docx
  • 人教版八年级上册15.2.2 分式的加减(一).docx人教版八年级上册15.2.2 分式的加减(一).docx
  • 人教版八年级上册15.1 分式同步练习.docx人教版八年级上册15.1 分式同步练习.docx
  • 人教版八年级上册14.3 提公因式法分解练习题及答案.docx人教版八年级上册14.3 提公因式法分解练习题及答案.docx
  • 人教版八年级上册13.3.2 等边三角形(第一课时)学案(无答案).docx人教版八年级上册13.3.2 等边三角形(第一课时)学案(无答案).docx
  • 人教版八年级上册13.3.1《等腰三角形》.docx人教版八年级上册13.3.1《等腰三角形》.docx
  • 人教版八年级上册13.1.2 线段的垂直平分线的性质导学案(无答案).docx人教版八年级上册13.1.2 线段的垂直平分线的性质导学案(无答案).docx
  • 人教版八年级上册11.3.1《多边形》.docx人教版八年级上册11.3.1《多边形》.docx
  • 人教版八年级上册 阶段性复习 辅导讲义(有答案).docx人教版八年级上册 阶段性复习 辅导讲义(有答案).docx
  • 人教版八年级上册 道德与法治知识点汇总.docx人教版八年级上册 道德与法治知识点汇总.docx
  • 人教版八年级上册 第四讲角平分线的性质与判定 学案 (Word版无答案).docx人教版八年级上册 第四讲角平分线的性质与判定 学案 (Word版无答案).docx
  • 人教版八年级上册 第十五章 15.2 分式的运算 课时练.docx人教版八年级上册 第十五章 15.2 分式的运算 课时练.docx
  • 人教版八年级上册 第十五章 15.1 分式 课时练.docx人教版八年级上册 第十五章 15.1 分式 课时练.docx
  • 人教版八年级上册 第十二章 12.3 角平分线的性质学案(无答案).docx人教版八年级上册 第十二章 12.3 角平分线的性质学案(无答案).docx
  • 人教版八年级上册 第十二章 12.3 角平分线中的辅助线问题 学案(无答案).docx人教版八年级上册 第十二章 12.3 角平分线中的辅助线问题 学案(无答案).docx
  • 人教版八年级上册 第十三章 13.2 画轴对称图形 课时练.docx人教版八年级上册 第十三章 13.2 画轴对称图形 课时练.docx
  • 人教版八年级上册 第十一章三角形单元练习题(无答案).docx人教版八年级上册 第十一章三角形单元练习题(无答案).docx
  • 人教版八年级上册 第十一章 数学活动 平面镶嵌教学实录(详案).docx人教版八年级上册 第十一章 数学活动 平面镶嵌教学实录(详案).docx
  • 人教版八年级上册 第十一章 11.3.1 多边形 学案(无答案).docx人教版八年级上册 第十一章 11.3.1 多边形 学案(无答案).docx
  • 人教版八年级上册 第十一章 11.1.2 三角形的高、中线和角平分线学案(无答案).docx人教版八年级上册 第十一章 11.1.2 三角形的高、中线和角平分线学案(无答案).docx
  • 人教版八年级上册 第八讲等边三角形的性质与判定 讲义(Word版无答案).docx人教版八年级上册 第八讲等边三角形的性质与判定 讲义(Word版无答案).docx
  • 人教版八年级上册 第五讲等腰三角形的判定与性质 讲义(Word版无答案).docx人教版八年级上册 第五讲等腰三角形的判定与性质 讲义(Word版无答案).docx
  • 人教版八年级上册 第五讲等腰三角形的判定与性质 讲义(Word版无答案).docx人教版八年级上册 第五讲等腰三角形的判定与性质 讲义(Word版无答案).docx
  • 人教版八年级上册 第七讲线段的垂直平分线讲义(Word版无答案).docx人教版八年级上册 第七讲线段的垂直平分线讲义(Word版无答案).docx
  • 人教版八年级上册 第15章 分式 复习教案(无答案).docx人教版八年级上册 第15章 分式 复习教案(无答案).docx
  • 人教版八年级上册 第14章 整式的乘法与因式分解《提取公因式》提高训练(图片版无答案).docx人教版八年级上册 第14章 整式的乘法与因式分解《提取公因式》提高训练(图片版无答案).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1