2022-2023学年解析卷人教版九年级数学上册期末专题攻克试题 (A)卷(含答案及解析).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022-2023学年解析卷人教版九年级数学上册期末专题攻克试题 A卷含答案及解析 2022 2023 学年 解析 卷人教版 九年级 数学 上册 期末 专题 攻克 试题 答案
- 资源描述:
-
1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末专题攻克试题 (A)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图1,矩形中,点为的中点,点沿从点运动到点,设,两点间的距离为
2、,图2是点运动时随变化的关系图象,则的长为()ABCD2、抛物线的对称轴为直线若关于的一元二次方程(为实数)在的范围内有实数根,则的取值范围是()ABCD3、距考试还有20天的时间,为鼓舞干劲,老师要求班上每一名同学要给同组的其他同学写一份拼搏进取的留言,小明所在的小组共写了30份留言,该小组共有()A7人B6人C5人D4人4、如图,在等腰RtABC中,ACBC,点P在以斜边AB为直径的半圆上,M为PC的中点当点P沿半圆从点A运动至点B时,点M运动的路径长是()ABCD25、如图,已知是的两条切线,A,B为切点,线段交于点M给出下列四种说法:;四边形有外接圆;M是外接圆的圆心,其中正确说法的个
3、数是()A1B2C3D4二、多选题(5小题,每小题4分,共计20分)1、关于抛物线y=(x2)2+1,下列说法不正确的是( )A开口向上,顶点坐标(2,1)B开口向下,对称轴是直线x=2C开口向下,顶点坐标(2,1)D当x2时,函数值y随x值的增大而增大2、请观察下列美丽的图案,你认为既是轴对称图形,又是中心对称图形的是()ABCD3、如图,二次函数yax2+bx+c的图象经过点A(4,0),其对称轴为直线x1,下列结论正确 线 封 密 内 号学级年名姓 线 封 密 外 的是()Aa+b+c0Babc0C2a+b0D若P(6,y1),Q(m,y2)是抛物线上两点,且y1y2,则6m44、下列说
4、法正确的是()A“射击运动员射击一次,命中靶心”是随机事件B某彩票的中奖机会是1%,买100张一定会中奖C抛掷一枚质地均匀的硬币两次,则两次都是“正面朝上”的概率是D某校有3200名学生,为了解学生最喜欢的课外体育运动项目,随机抽取了200名学生,其中有85名学生表示最喜欢的项目是跳绳,估计该校最喜欢的课外体育运动项目为跳绳的有1360人5、一个两位数,十位数字与个位数字之和是5,把这个数的个位数字与十位数字对调后,所得的新的两位数与原来的两位数的乘积是736,原来的两位数是()A23B32CD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、若二次函数的顶点在x轴上,则
5、_2、如图,在中,则图中阴影部分的面积是_(结果保留)3、抛物线yax2+bx+c(a0)的部分图象如图所示,其与x轴的一个交点坐标为(3,0),对称轴为x1,则当y0时,x的取值范围是_4、如图,ABC和DEC关于点C成中心对称,若AC1,AB2,BAC90,则AE的长是_5、 “降次”是解一元二次方程的基本思想,用这种思想解高次方程x3x0,它的解是_四、解答题(5小题,每小题8分,共计40分)1、如图,在RtABC中,C90,BD平分ABC,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E 线 封 密 内 号学级年名姓 线 封 密 外 (1)求证:AC是O的切线;(2)若
6、OB2,CD,求图中阴影部分的面积(结果保留)2、二次函数与轴分别交于点和点,与轴交于点,直线的解析式为,轴交直线于点(1)求二次函数的解析式;(2)为线段上一动点,过点且垂直于轴的直线与抛物线及直线分别交于点、直线与直线交于点,当时,求值3、陕西某景区吸引了大量中外游客前来参观,如果游客过多,对进景区的游客健康检查、拥堵等问题会产生不利影响,但也要保证一定的门票收入,因此景区采取了涨浮门票价格的方法来控制旅游人数,在该方法实施过程中发现:每周旅游人数与票价之间存在着如图所示的一次函数关系在这种情况下,如果要保证每周3 000万元的门票收入,那么每周应限定旅游人数是多少万人?门票价格应是多少元
7、?4、如图,AB是O的直径,弦CDAB于点E,点PO上,1=C(1)求证:CBPD;(2)若ABC=55,求P的度数5、一个二次函数y=(k1)求k值-参考答案-一、单选题1、C【解析】【分析】先利用图2得出当P点位于B点时和当P点位于E点时的情况,得到AB和BE之间的关系以及,再利用勾股定理求解即可得到BE的值,最后利用中点定义得到BC的值【详解】解:由图2可知,当P点位于B点时,即,当P点位于E点时,即,则,,即, 线 封 密 内 号学级年名姓 线 封 密 外 ,点为的中点,,故选:C【考点】本题考查了学生对函数图象的理解与应用,涉及到了勾股定理、解一元二次方程、中点的定义等内容,解决本题
8、的关键是能正确理解题意,能从图象中提取相关信息,能利用勾股定理建立方程等,本题蕴含了数形结合的思想方法2、A【解析】【分析】根据给出的对称轴求出函数解析式为,将一元二次方程的实数根可以看做与函数的有交点,再由的范围确定的取值范围即可求解;【详解】的对称轴为直线,一元二次方程的实数根可以看做与函数的有交点,方程在的范围内有实数根,当时,当时,函数在时有最小值2,故选A【考点】本题考查二次函数的图象及性质;能够将方程的实数根问题转化为二次函数与直线的交点问题,借助数形结合解题是关键3、B【解析】【分析】设小组有x人,根据题意,得x(x-1)=30,解方程即可【详解】设小组有x人,根据题意,得x(x
9、-1)=30,整理,得,解方程,得(舍去),故选B【考点】本题考查了一元二次方程的应用,熟练掌握方程的应用是解题的关键4、B 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】取AB的中点O、AC的中点E、BC的中点F,连接OC、OP、OM、OE、OF、EF,如图,利用勾股定理得到AB的长,进而可求出OC,OP的长,求得CMO=90,于是得到点M在以OC为直径的圆上,然后根据圆的周长公式计算点M运动的路径长【详解】解:取AB的中点O、AC的中点E、BC的中点F,连接OC、OP、OM、OE、OF、EF,如图,在等腰RtABC中,AC=BC=2,AB=BC=4,OC=OP=AB=2,A
10、CB=90,C在O上,M为PC的中点,OMPC,CMO=90,点M在以OC为直径的圆上,P点在A点时,M点在E点;P点在B点时,M点在F点O是AB中点,E是AC中点,OE是ABC的中位线,OE/BC,OE=BC=,OEAC,同理OFBC,OF=,四边形CEOF是矩形,OE=OF,四边形CEOF为正方形,EF=OC=2,M点的路径为以EF为直径的半圆,点M运动的路径长=2=故选:B【考点】本题考查了等腰三角形的性质,勾股定理,正方形的判定与性质,圆周角定理,以及动点的轨迹:点按一定规律运动所形成的图形为点运动的轨迹解决此题的关键是利用圆周角定理确定M点的轨迹为以EF为直径的半圆5、C【解析】【分
11、析】由切线长定理判断,结合等腰三角形的性质判断,利用切线的性质与直角三角形的斜边上的中线等于斜边的一半,判断,利用反证法判断【详解】如图, 是的两条切线, 故正确, 故正确, 线 封 密 内 号学级年名姓 线 封 密 外 是的两条切线, 取的中点,连接,则 所以:以为圆心,为半径作圆,则共圆,故正确, M是外接圆的圆心, 与题干提供的条件不符,故错误,综上:正确的说法是个,故选C【考点】本题考查的是切线长定理,三角形的外接圆,四边形的外接圆,掌握以上知识是解题的关键二、多选题1、ABC【解析】【分析】由抛物线的解析式可求得其对称轴、开口方向、顶点坐标,进一步可得出其增减性,可得出答案【详解】解
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-647449.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
