分享
分享赚钱 收藏 举报 版权申诉 / 35

类型2022年人教版九年级数学上册第二十三章旋转专题测评试卷(解析版).docx

  • 上传人:a****
  • 文档编号:695726
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:35
  • 大小:720.25KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 年人教版 九年级 数学 上册 第二十三 旋转 专题 测评 试卷 解析
    资源描述:

    1、人教版九年级数学上册第二十三章旋转专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将正方形绕点A顺时针旋转,得到正方形,的延长线交于点H,则的大小为()ABCD2、如图,在平面直角坐标系中,

    2、已知点P(0,2),点A(4,2)以点P为旋转中心,把点A按逆时针方向旋转60,得点B在,四个点中,直线PB经过的点是()ABCD3、如图,正三角形ABC的边长为3,将ABC绕它的外心O逆时针旋转60得到ABC,则它们重叠部分的面积是()A2BCD4、如图,在平面直角坐标系xOy中,ABC顶点的横、纵坐标都是整数若将ABC以某点为旋转中心,旋转得到ABC,则旋转中心的坐标是()A(1,1)B(1,1)C(0,0)D(1,2)5、如图,RtABC中,C=90,A=30,AB=20,点P是AC边上的一个动点,将线段BP绕点B顺时针旋转60得到线段BQ,连接CQ则在点P运动过程中,线段CQ的最小值为

    3、()A4B5C10D56、如图所示,在RtABC中,ABAC,D、E是斜边BC上的两点,且DAE45,将ADC绕点A按顺时针方向旋转90后得到AFB,连接EF,有下列结论:BEDC;BAFDAC;FAEDAE;BFDC其中正确的有()ABCD7、如图,中,若将绕点逆时针旋转得到,连接,则在点运动过程中,线段的最小值为()A1BCD28、小明把一副三角板按如图所示叠放在一起,固定三角板ABC,将另一块三角板DEF绕公共顶点B顺时针旋转(旋转角度不超过180)若两块三角板有一边平行,则三角板DEF旋转的度数可能是()A15或45B15或45或90C45或90或135D15或45或90或1359、如

    4、图,将ABC绕点A逆时针旋转70得到ADE,点B、C的对应点分别为D、E,当点B、C、D、P在同一条直线上时,则PDE的度数为()A55B70C80D11010、如图,在中,D为内一点,分别连接PA、PB、PC,当时,则BC的值为()A1BCD2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在44的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有_种2、如图,正方形的边长为2,将正方形绕点O顺时针旋转得到正方形,连接,当点恰好落在直线上时,线段的长度是_3、如图,点P是边长为1的正方形A

    5、BCD的对角线AC上的一个动点,点E是BC中点,连接PE,并将PE绕点P逆时针旋转120得到PF,连接EF,则EF的最小值是_4、镇江市旅游局为了亮化某景点,在两条笔直且互相平行的景观道MN、QP上分别放置A、B两盏激光灯,如图所示A灯发出的光束自AM逆时针旋转至AN便立即回转;B灯发出的光束自BP逆时针旋转至BQ便立即回转,两灯不间断照射,A灯每秒转动12,B灯每秒转动4B灯先转动12秒,A灯才开始转动当B灯光束第一次到达BQ之前,两灯的光束互相平行时A灯旋转的时间是 5、如图,在菱形中,将菱形绕点逆时针方向旋转,对应得到菱形,点在上,与交于点,则的长是_三、解答题(5小题,每小题10分,共

    6、计50分)1、小明在一次数学活动中,进行了如下的探究活动:如图,在矩形ABCD中,AB=8,AD=6,以点B为中心,顺时针旋转矩形ABCD,得到矩形BEFG,点A、D、C的对应点分别为E、F、G(1)如图1,当点E落在CD边上时,求DE的长;(2)如图2,当点E落在线段DF上时,BE与CD交于点H求证:ABDEBD;求DH的长(3)如图3,若矩形ABCD对角线ACBD相交于点P,连接PE、PF,记PEF面积为S,请直接写出S的最值2、正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且EDF=45.将DAE绕点D逆时针旋转90,得到DCM.(1)求证:EF=FM(2)当AE=1时,求E

    7、F的长3、问题情境:数学活动课上,老师让同学们以“三角形的旋转”为主题开展数学活动,ABC和DEC是两个全等的直角三角形纸片,其中ACBDCE90,BE30,ABDE4解决问题:(1)如图1,智慧小组将DEC绕点C顺时针旋转,发现当点D恰好落在AB边上时,DEAC,请你帮他们证明这个结论;(2)缜密小组在智慧小组的基础上继续探究,当DEC绕点C继续旋转到如图2所示的位置时,连接AE、AD、BD,他们提出SBDCSAEC,请你帮他们验证这一结论是否正确,并说明理由4、如图,点E为正方形ABCD外一点,AEB90,将RtABE绕A点逆时针方向旋转90得到ADF,DF的延长线交BE于H点(1)试判定

    8、四边形AFHE的形状,并说明理由;(2)已知BH7,DH17,求BC的长5、如图是由边长为的小正方形构成的的网格,线段的端点均在格点上,请按要求画图画出一个即可(1)在图中以为边画一个四边形,使它的另外两个顶点在格点上,且该四边形是中心对称图形,但不是轴对称图形;(2)在图中以为对角线画一个四边形,使它的另外两个顶点在格点上,且所画四边形既是轴对称图形又是中心对称图形-参考答案-一、单选题1、B【解析】【分析】根据旋转的性质,求得BAE=38,根据正方形的性质,求得DBA=45,ABH=135,利用四边形的内角和定理计算即可【详解】根据旋转的性质,得BAE=38,四边形ABCD是正方形,DBA

    9、=45,ABH=135,四边形AEFG是正方形,E=90,DHE=360-90-38-135=97,故选B【考点】本题考查了旋转的性质,正方形的性质,四边形的内角和定理,熟练掌握正方形的性质,旋转的性质是解题的关键2、B【解析】【分析】根据含30角的直角三角形的性质可得B(2,2+2),利用待定系数法可得直线PB的解析式,依次将M1,M2,M3,M4四个点的一个坐标代入y=x+2中可解答【详解】解:点A(4,2),点P(0,2),PAy轴,PA=4,由旋转得:APB=60,AP=PB=4,如图,过点B作BCy轴于C,BPC=30,BC=2,PC=2,B(2,2+2),设直线PB的解析式为:y=

    10、kx+b,则,直线PB的解析式为:y=x+2,当y=0时,x+2=0,x=-,点M1(-,0)不在直线PB上,当x=-时,y=-3+2=1,M2(-,-1)在直线PB上,当x=1时,y=+2,M3(1,4)不在直线PB上,当x=2时,y=2+2,M4(2,)不在直线PB上故选:B【考点】本题考查的是图形旋转变换,待定系数法求一次函数的解析式,确定点B的坐标是解本题的关键3、C【解析】【分析】根据重合部分是正六边形,连接O和正六边形的各个顶点,所得的三角形都是全等的等边三角形,据此即可求解【详解】解:作AMBC于M,如图:重合部分是正六边形,连接O和正六边形的各个顶点,所得的三角形都是全等的等边

    11、三角形ABC是等边三角形,AMBC,ABBC3,BMCMBC,BAM30,AMBM,ABC的面积BCAM3,重叠部分的面积ABC的面积;故选:C【考点】本题考查了三角形的外心、等边三角形的性质以及旋转的性质,理解连接O和正六边形的各个顶点,所得的三角形都为全等的等边三角形是关键4、A【解析】【分析】对应点连线的垂直平分线的交点即为旋转中心,然后直接写成坐标即可【详解】解:如图点O即为旋转中心,坐标为O(1,1) 故选:A【考点】本题主要考查了旋转中心的确定方法,熟练掌握对应点连线的垂直平分线的交点即为旋转中心是解题的关键5、D【解析】【分析】将RtABC绕点B顺时针旋转60得到,再设线段的中点

    12、为M,并连接CM根据线段BP的旋转方式确定点Q在线段上运动,再根据垂线段最短确定当Q与点M重合时,CQ取得最小值为CM根据C=90,A=30,AB=20求出BC的长度,再根据旋转的性质求出和的长度,根据线段的和差关系确定点C是线段的中点,进而确定CM是的中位线,再根据三角形中位线定理即可求出CM的长度【详解】解:如下图所示,将RtABC绕点B顺时针旋转60得到,再设线段的中点为M,并连接CM点P是AC边上的一个动点,线段BP绕点B顺时针旋转60得到线段BQ,点Q在线段上运动当,即点Q与点M重合时,线段CQ取得最小值为CMC=90,A=30,AB=20,BC=10RtABC绕点B顺时针旋转60得

    13、到,=BC=10,点C是线段中点点M是线段的中点,CM是的中位线故选:D【考点】本题考查旋转的性质,直角三角形30所对的直角边是斜边的一半,垂线段最短,三角形中位线定理,综合应用这些知识点是解题关键6、C【解析】【分析】利用旋转性质可得ABFACD,根据全等三角形的性质一一判断即可【详解】解:ADC绕A顺时针旋转90后得到AFB,ABFACD,BAFCAD,AFAD,BFCD,故正确,EAFBAF+BAECAD+BAEBACDAE904545DAE故正确无法判断BECD,故错误,故选:C【考点】本题考查了旋转的性质:旋转前后两图形全等,解题的关键是熟练掌握基本知识,属于中考常考题型7、B【解析

    14、】【分析】在AB上截取AQ=AO=1,利用SAS证明AQDAOE,推出QD=OE,当QDBC时,QD的值最小,即线段OE有最小值,利用勾股定理即可求解【详解】如图,在AB上截取AQ=AO=1,连接DQ,将AD绕A点逆时针旋转90得到AE,BAC=DAE=90,BAC-DAC =DAE-DAC,即BAD=CAE,在AQD和AOE中,AQDAOE(SAS),QD=OE,D点在线段BC上运动,当QDBC时,QD的值最小,即线段OE有最小值,ABC是等腰直角三角形,B=45,QDBC,QBD是等腰直角三角形,AB=AC=3,AO=1,QB=2,由勾股定理得QD=QB=,线段OE有最小值为,故选:B【考

    15、点】本题考查了勾股定理,等腰直角三角形的判定和性质,全等三角形的判定和性质,旋转的性质,熟记各图形的性质并准确识图是解题的关键8、D【解析】【分析】分四种情况讨论,由平行线的性质和旋转的性质可求解【详解】解:设旋转的度数为,若DEAB,则E=ABE=90,=90-30-45=15,若BEAC,则ABE=180-A=120,=120-30-45=45,若BDAC,则ACB=CBD=90,=90,当点C,点B,点E共线时,ACB=DEB=90,ACDE,=180-45=135,综上三角板DEF旋转的度数可能是15或45或90或135故选:D【考点】本题考查了旋转的性质,平行线的性质,利用分类讨论思

    16、想解决问题是本题的关键9、B【解析】【分析】首先根据旋转的性质可得,AB=AD,据此即可求得,据此即可求得【详解】解:将ABC绕点A逆时针旋转70得到ADE,AB=AD,又点B、C、D、P在同一条直线上,故选:B【考点】本题考查了旋转的性质,等边对等角的应用,三角形内角和定理,熟练掌握和运用旋转的性质是解决本题的关键10、C【解析】【分析】将BPA顺时针旋转60,到BMN处,得到BPM,ABN是等边三角形,证明C、P、M、N四点共线,且CAN=90,设BC=x,则AB=BN=2x,AC=,利用勾股定理计算即可【详解】将BPA顺时针旋转60,到BMN处,则BPM,ABN是等边三角形,BPM=BM

    17、P=60,BAN=60,PM=PB,BA=BN,PA=MN,CPB=BPA=APC=BMN=120,BMP+BMN=180,BPC+BPM =180,C、P、M、N四点共线,CP+PM+MN=CP+PB+PA=,BAC=30,BAN=60,CAN=90,设BC=x,则AB=BN=2x,AC=,解得x=,x= - ,舍去,故选C【考点】本题考查了旋转的性质,等边三角形的判定和性质,勾股定理,直角三角形的性质,熟练掌握旋转的性质是解题的关键二、填空题1、13【解析】【分析】根据轴对称图形的性质,分别移动一个正方形,即可得出符合要求的答案【详解】如图所示:故一共有13画法.2、或【解析】【分析】分当

    18、点恰好落在线段的延长线上时,当点恰好落在线段上时,两种情况讨论求解即可【详解】解:如图1所示,当点恰好落在线段的延长线上时,连接OB,过点O作于E,四边形OABC和四边形都是正方形, ,;如图2所示,当点恰好落在线段上时,连接OB,过点O作于E,同理可求出 ,;综上所述,或,故答案为:或【考点】本题主要考查了旋转的性质,正方形的性质,勾股定理,正确画出图形作出辅助线是解题的关键3、#【解析】【分析】当EPAC时,EF有最小值,过点P作PMEF于点M,由直角三角形的性质求出PE的长,由旋转的性质得出PE=PF,EPF=120,求出PM的长,则可得出答案【详解】解:如图,当EPAC时,EF有最小值

    19、,过点P作PMEF于点M,四边形ABCD是正方形,ACB=45,E为BC的中点,BC=1,CE=,PE=CE=,将PE绕点P逆时针旋转120得到PF,PE=PF,EPF=120,PEF=30,PM=PE=由勾股定理得EM=,EF=2EM=,EF的最小值是故答案为:【考点】本题考查了旋转的性质,正方形的性质,直角三角形的性质,垂线段的性质,熟练掌握旋转的性质是解题的关键4、6秒或19.5秒【解析】【分析】设A灯旋转t秒,两灯光束平行,B灯光束第一次到达BQ需要180445(秒),推出t4512,即t33利用平行线的性质,结合角度间关系,构建方程即可解答【详解】解:设A灯旋转t秒,两灯的光束平行,

    20、B灯光束第一次到达BQ需要180445(秒),t4512,即t33由题意,满足以下条件时,两灯的光束能互相平行:如图,MAMPBP,12t4(12+t),解得t6;如图,NAM+PBP180,12t180+4(12+t)180,解得t19.5;综上所述,满足条件的t的值为6秒或19.5秒故答案为:6秒或19.5秒【考点】本题主要考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型5、【解析】【分析】连接交于,由菱形的性质得出,由直角三角形的性质求出,得出,由旋转的性质得:,得出,证出,由直角三角形的性质得出,即可得出结果【详解】解:连接交于,如图所示:四边形是菱形,由旋转的性质得:

    21、,四边形是菱形,;故答案为【考点】考核知识点:菱形性质,旋转性质.解直角三角形是关键.三、解答题1、 (1)DE的长为8-2;(2)见解析;DH=;(3)9S39【解析】【分析】(1)由旋转性质知BA=BE=8,由矩形性质知BC=AD=6,再在RtBCE中根据勾股定理可得;(2)利用旋转的性质可得:A=BEF=90,AB=BE,由“HL”可证ADBEDB;由全等三角形的性质和平行线的性质可得BDC=EBD,可得BH=DH,由勾股定理可求DH的值;(3)由勾股定理可求BD的值,可得BP=5,当点E在线段BD上时,PEF面积有最小值,当点E在线段DB延长线上时,PEF面积有最大值(1)解:由旋转的

    22、性质知BA=BE=8,四边形ABCD是矩形,AD=BC=6,C=90,CE=2;DE=CD-CE=8-2;(2)证明:由旋转知:A=BEF=90,AB=BE,BEF=90,BED=90,又BD=BD,RtABDRtEBD(HL);解:设DH=x,由知ABDEBD,ABD=EBD,又在矩形ABCD中,有 ABCD,BDC=ABD,BDC=EBD,BH=DH,在RtBCH中,由勾股定理得:(8-x)2+62=x2,x=,即DH=;(3)解:四边形ABCD是矩形,AB=8,AD=BC=6,BP=DP=AP=CP,BD=10,BP=5,EF=AD=6,如图,EF始终在以B为圆心,BE为半径的圆上,PE

    23、F的底EF是定值为6,当高最小或最大时,PEF的面积就存在最小值或最大值,当点E在线段BD上时,此时PE最短,则PEF面积有最小值;当点E在DB延长线上时,此时PE最长,则PEF面积有最大值;分情况讨论:当点E在线段BD上时,PEF面积有最小值,SPEF=6(8-5)=9;当点E在线段DB延长线上时,PEF面积有最大值SPEF=6(8+5)=399S39【考点】本题是四边形的综合题,主要考查矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题2、 (1)见解析;(2).【解析】【分析】(1)由折叠可得DE=D

    24、M,EDM为直角,可得出EDF+MDF=90,由EDF=45,得到MDF为45,可得出EDF=MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;(2)由第一问的全等得到AE=CM=1,正方形的边长为3,用AB-AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM-FM=BM-EF=4-x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长【详解】(1)DAE逆时针旋转90得到DCM,DE=DM ,EDM=90,EDF + FDM=90,EDF=45,FDM =EDM

    25、=45,DF= DF,DEFDMF,EF=MF(2) 设EF=x, AE=CM=1 , BF=BM-MF=BM-EF=4-x, EB=2,在RtEBF中,由勾股定理得,即,解得,.3、(1)证明见解析;(2)正确,理由见解析【解析】【分析】(1)如图1中,根据旋转的性质可得ACCD,然后求出ACD是等边三角形,根据等边三角形的性质可得ACD60,然后根据内错角相等,两直线平行进行解答;(2)如图2中,作DMBC于M,ANEC交EC的延长线于N根据旋转的性质可得BCCE,ACCD,再求出ACNDCM,然后利用“角角边”证明ACN和DCM全等,根据全等三角形对应边相等可得ANDM,然后利用等底等高

    26、的三角形的面积相等证明【详解】解:(1)如图1中,DEC绕点C旋转点D恰好落在AB边上,ACCD,BAC90B903060,ACD是等边三角形,ACD60,又CDEBAC60,ACDCDE,DEAC;(2)结论正确,理由如下:如图2中,作DMBC于M,ANEC交EC的延长线于NDEC是由ABC绕点C旋转得到,BCCE,ACCD,ACNBCN90,DCMBCN1809090,ACNDCM,在ACN和DCM中,ACNDCM(AAS),ANDM,BDC的面积和AEC的面积相等(等底等高的三角形的面积相等),即SBDCSAEC【考点】本题属于几何变换综合题,主要考查了全等三角形的判定与性质,等边三角形

    27、的判定与性质,旋转的性质的综合应用,添加恰当辅助线构造全等三角形是解题的关键4、 (1)四边形AFHE是正方形,理由见解析;(2)13【解析】【分析】(1 )根据旋转的性质可得AEBAFD90,EAF90,AEAF,从而可得四边形AFHE是正方形;(2 )连接BD,先在RtDHB中利用勾股定理求出BD,再在RtBCD中求出BC,即可解答(1)解:四边形AFHE是正方形,理由:由旋转得:AEBAFD90,EAF90,AFH180AFD90,四边形AFHE是矩形,由旋转得:AEAF,四边形AFHE是正方形;(2)连接BD,四边形AFHE是正方形,DHE90,DHB180DHE90,BH7,DH17

    28、,BD13,四边形ABCD是正方形,BCCD,C90,BC13,BC的长为13【考点】本题主要考查了正方形的性质、勾股定理及旋转性质,作辅助线直角三角形是解题关键5、 (1)见解析;(2)见解析【解析】【分析】(1)根据旋转和轴对称的性质即可在图中以为边画一个四边形,使它的另外两个顶点在格点上,且该四边形是中心对称图形,但不是轴对称图形;(2)根据轴对称性质和中心对称性质即可在图中以为对角线画一个四边形,使它的另外两个顶点在格点上,且所画四边形既是轴对称图形又是中心对称图形(1)如图,四边形即为所求;(2)如图,四边形即为所求【考点】本题主要考查作图的旋转变换和轴对称变换,解题的关键是掌握中心对称和轴对称图形的概念

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年人教版九年级数学上册第二十三章旋转专题测评试卷(解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-695726.html
    相关资源 更多
  • 专题10推理篇——判断与推理(讲义)(原卷版).docx专题10推理篇——判断与推理(讲义)(原卷版).docx
  • 专题10截长补短模型综合应用(专项训练)(能力提升)(解析版).docx专题10截长补短模型综合应用(专项训练)(能力提升)(解析版).docx
  • 专题10截长补短模型综合应用(专项训练)(能力提升)(原卷版).docx专题10截长补短模型综合应用(专项训练)(能力提升)(原卷版).docx
  • 专题10定语从句(练习)(原卷版).docx专题10定语从句(练习)(原卷版).docx
  • 专题10天体运动(解析版).docx专题10天体运动(解析版).docx
  • 专题10天体运动(原卷版).docx专题10天体运动(原卷版).docx
  • 专题10压强(测试)(解析版).docx专题10压强(测试)(解析版).docx
  • 专题10压强(测试)(原卷版).docx专题10压强(测试)(原卷版).docx
  • 专题10功和机械能(原卷版).docx专题10功和机械能(原卷版).docx
  • 专题10功和机械能 (解析版).docx专题10功和机械能 (解析版).docx
  • 专题10函数综合应用 -【中职专用】中职高考数学二轮复习专项突破.docx专题10函数综合应用 -【中职专用】中职高考数学二轮复习专项突破.docx
  • 专题10函数的图象-2021年新高考数学基础考点一轮复习.docx专题10函数的图象-2021年新高考数学基础考点一轮复习.docx
  • 专题10二次函数交点综合应用(知识解读)-备战2023年中考数学《重难点解读•专项训练》(全国通用)(解析版).docx专题10二次函数交点综合应用(知识解读)-备战2023年中考数学《重难点解读•专项训练》(全国通用)(解析版).docx
  • 专题10二次函数交点综合应用(知识解读)-备战2023年中考数学《重难点解读•专项训练》(全国通用)(原卷版).docx专题10二次函数交点综合应用(知识解读)-备战2023年中考数学《重难点解读•专项训练》(全国通用)(原卷版).docx
  • 专题10二次函数交点综合应用(专项训练)(解析版).docx专题10二次函数交点综合应用(专项训练)(解析版).docx
  • 专题10二次函数交点综合应用(专项训练)(原卷版).docx专题10二次函数交点综合应用(专项训练)(原卷版).docx
  • 专题102020-2021年广东省中考英语考前必背书面表达50篇.docx专题102020-2021年广东省中考英语考前必背书面表达50篇.docx
  • 专题10 三角函数【多选题】(解析版).docx专题10 三角函数【多选题】(解析版).docx
  • 专题10 三角函数【多选题】(原卷版).docx专题10 三角函数【多选题】(原卷版).docx
  • 专题10 2022年中考英语易错题精讲精练-动词时态.docx专题10 2022年中考英语易错题精讲精练-动词时态.docx
  • 专题1.复分解反应与离子共存(讲义)-2022-2023学年九年级上册科学讲练课堂(浙教版).docx专题1.复分解反应与离子共存(讲义)-2022-2023学年九年级上册科学讲练课堂(浙教版).docx
  • 专题1.名词考点聚焦和精讲 (原卷版).docx专题1.名词考点聚焦和精讲 (原卷版).docx
  • 专题1.9 正方形的性质与判定(知识讲解)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx专题1.9 正方形的性质与判定(知识讲解)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx
  • 专题1.9 数轴(巩固篇)(专项练习)-2022-2023学年七年级数学上册基础知识专项讲练(人教版).docx专题1.9 数轴(巩固篇)(专项练习)-2022-2023学年七年级数学上册基础知识专项讲练(人教版).docx
  • 专题1.9 探索三角形全等的条件(ASAAAS)(直通中考)-2023-2024学年八年级数学上册基础知识专项突破讲与练(苏科版).docx专题1.9 探索三角形全等的条件(ASAAAS)(直通中考)-2023-2024学年八年级数学上册基础知识专项突破讲与练(苏科版).docx
  • 专题1.9 平行线中的折叠问题(分层练习)(基础练)-2023-2024学年七年级数学下册全章复习与专题突破讲与练(浙教版).docx专题1.9 平行线中的折叠问题(分层练习)(基础练)-2023-2024学年七年级数学下册全章复习与专题突破讲与练(浙教版).docx
  • 专题1.9 二次根式的加减(巩固篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx专题1.9 二次根式的加减(巩固篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx
  • 专题1.9 二次函数的图象与性质常考知识点分类专题(培优练)-2023-2024学年九年级数学上册全章复习与专题突破讲与练(浙教版).docx专题1.9 二次函数的图象与性质常考知识点分类专题(培优练)-2023-2024学年九年级数学上册全章复习与专题突破讲与练(浙教版).docx
  • 专题1.9 二次函数y=ax² k(a≠0)的图象与性质(巩固篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(浙教版).docx专题1.9 二次函数y=ax² k(a≠0)的图象与性质(巩固篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(浙教版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1