分享
分享赚钱 收藏 举报 版权申诉 / 17

类型2022年北师大版七年级数学上册第一章丰富的图形世界定向练习试题(含答案解析版).docx

  • 上传人:a****
  • 文档编号:698584
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:17
  • 大小:237.19KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 北师大 七年 级数 上册 第一章 丰富 图形 世界 定向 练习 试题 答案 解析
    资源描述:

    1、七年级数学上册第一章丰富的图形世界定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,有一个无盖的正方体纸盒,的下底面标有字母“”,若沿图中的粗线将其剪开展成平面图形,这个平面图形是()ABCD

    2、2、不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征甲同学:它有4个面是三角形;乙同学:它有8条棱该模型的形状对应的立体图形可能是()A三棱柱B四棱柱C三棱锥D四棱锥3、将如图所示的图形绕着给定的直线L旋转一周后形成的几何体是()ABCD4、粉刷墙壁时,粉刷工人用滚筒在墙上刷过几次后,墙壁马上换上了“新装”,在这个过程中,你认为下列判断正确的是()A点动成线B线动成面C面动成体D面与面相交得到线5、一个几何体的侧面展开图如图所示,则该几何体的底面是()ABCD6、圆柱与圆锥的体积之比为2:3,底面圆的半径相同,那么它们的高之比为()A2:3B4:5C2:1D2:97、下列几何体中

    3、,主视图和俯视图都为矩形的是()ABCD8、长方体中,与一条棱异面的棱有()A2条B3条C4条D6条9、经过折叠可以得到四棱柱的是()ABCD10、下列图形中,正方体展开图错误的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个物体的外形是长方体,其内部构造不详用一组水平的平面截这个物体时,得到了一组(自下而上)截面,截面形状如图所示,这个长方体的内部构造可能是_2、如图,某长方体的表面展开图的面积为,其中,则AB=_3、如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是_4、如图是一个小正方体的侧面展开图,小正方体

    4、从如图所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,这时小正方体朝上面的字是_ 5、如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要_个小立方块三、解答题(5小题,每小题10分,共计50分)1、用小立方块搭一个几何体,使它的主视图和俯视图如图所示,俯视图中小正方形中字母表示该位置小立方块的个数,请解答下列问题:(1)=_,=_,=_(2)这个几何体最少由_个小立方块搭成,最多由_个小立方块搭成(3)当=1,=2时,画出这个几何体的左视图2、将如图所示的平面图形折叠后形成的图形

    5、的名称依次是_、_、_.3、阅读与思考请阅读下列材料,并完成相应的任务:包装盒的展开图:如图是一个同学们熟悉的包装盒如图是它的一种表面展开图,小明将图画在如图所示的的网格中(1)在图中,若字母Q表示包装盒的上表面,字母P表示包装盒的侧面,则下表面在包装盒表面展开图中的位置是()A.字母B;B字母A;C字母R;D字母T(2)若在图中,网格中每个小正方形的边长为1,求包装盒的表面积4、如图所示的是一个长方体的表面展开图,每个面上都标注了字母(字母朝外),回答下列问题:(1)如果面在长方体的底部放置,那么哪一个面会在它的上面?(2)如果面在前面,从左面看是面,那么哪一个面会在上面?(3)从右面看是面

    6、,面在左面,那么哪一个面会在上面?5、某物体的三视图如图:(1)此物体是什么体;(2)求此物体的全面积-参考答案-一、单选题1、A【解析】【分析】根据无盖可知底面M没有对面,再根据图形粗线的位置,可知底面的正方形位于底面与侧面的从左边数第2个正方形下边,然后根据选项选择即可【详解】正方体纸盒无盖,底面M没有对面,沿图中的粗线将其剪开展成平面图形,底面与侧面的从左边数第2个正方形相连,根据正方体的表面展开图,相对的面之间一定相隔一个正方形可知,只有A选项图形符合故选A【考点】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题2、D【解析】【详解】解:根据有

    7、四个三角形的面,且有8条棱,可知是四棱锥,而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱故选:D3、B【解析】【分析】根据面动成体的原理以及空间想象力可直接选出答案【详解】解:将如图所示的图形绕着给定的直线L旋转一周后形成的几何体是圆台,故选:B【考点】此题主要考查了点、线、面、体,关键是同学们要注意观察,培养自己的空间想象能力4、B【解析】【分析】点动线,线动成面,将滚筒看做线,在运动过程中形成面【详解】解:滚筒看成是线,滚动的过程成形成面,故选:B【考点】本题考查点、线、面的关系;理解点动成线,线动成面的过程是解题的关键5、B【解析】【分析】根据展开

    8、图推出几何体,再得出视图.【详解】根据展开图推出几何体是四棱柱,底面是四边形.故选B【考点】考核知识点:几何体的三视图.6、D【解析】【分析】利用圆柱、圆锥的体积公式,即可算出它们的高之比;【详解】由题意可知,圆柱的体积=h1,圆锥的体积=h2,圆柱与圆锥的体积之比为2:3,=2:9故选:D【考点】本题考查圆锥和圆柱的体积公式,熟练掌握圆锥和圆柱的体积公式计算是解决本题的关键7、B【解析】【详解】A、主视图为等腰三角形,俯视图为圆以及圆心,故A选项错误;B、主视图为矩形,俯视图为矩形,故B选项正确;C、主视图是矩形,俯视图均为圆,故C选项错误;D、主视图为梯形,俯视图为矩形,故D选项错误.故选

    9、:B.8、C【解析】【分析】由题意根据长方体中棱与平面位置关系可知与一条棱异面的平面上所有棱长都异面,以此进行分析即可得出答案【详解】解:因为与一条棱异面的平面上有4条棱长,所以长方体中,与一条棱异面的棱有4条故选:C【考点】本题考查长方体中棱与平面位置关系,熟练掌握异面的概念是解题的关键9、B【解析】【分析】由平面图形的折叠及立体图形的表面展开图的特点解题【详解】A、折叠后两个底面重合到了一个面上,不能得到四棱柱,故该项不符合题意;B、可以得到四棱柱,故该项符合题意;C、折叠后缺少一个底面,不能折成四棱柱,故该项不符合题意;D、折叠后两个底面重合,不能构成四棱柱,故该项不符合题意;故选:B【

    10、考点】此题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及展开图的各种情形10、D【解析】【分析】利用正方体及其表面展开图的特点解题【详解】D选项出现了“田字形”,折叠后有一行两个面无法折起来,从而缺少面,不能折成正方体,A、B、C选项是一个正方体的表面展开图故选:D【考点】此题考查了几何体的展开图,只要有“田”“凹”字的展开图都不是正方体的表面展开图二、填空题1、三棱锥【解析】【分析】通过观察可以发现:在长方体内部的三角形自下而上由大三角形逐渐变成小三角形、最后变成点,由此判定即可【详解】解:通过观察可以发现:在正方体内部的三角形自下而上由大三角形逐渐变成小三角形、最后变成点,这个长方体

    11、的内部构造可能是三棱锥,故答案为:三棱锥【考点】由截面形状去想象几何体与给一个几何体想象它的截面是一个互逆的思维过程,要根据所给截面形状仔细分析,展开想象2、8【解析】【分析】设AB=x,根据长方体的表面积列方程即可【详解】解:由题意得2(5x+10x+510)=340,解得x=8则AB=8故答案是:8【考点】本题考查了几何体的表面积以及几何体的展开图,解题的关键是掌握长方体表面积的计算公式3、故答案为点睛:本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案118【解析】【详解】试题分析:

    12、根据从上边看得到的图形是俯视图,可知从上边看是一个梯形:上底是1,下底是3,两腰是2,周长是1+2+2+3=8,故答案为8考点:1、简单组合体的三视图;2、截一个几何体4、路【解析】【分析】先由图1分析出:“国”和“兴”是对面,“梦”和“中”是对面,“复”和“路”是对面,再由图2结合空间想象得出答案【详解】解:由图1可知:“国”和“兴”是对面,“梦”和“中”是对面,“复”和“路”是对面,再由图2可知,1、2、3、4、5分别对应的面是“兴”、“梦”、“中”、“兴”、“复”,所以第5格朝上的字是“路”所以答案是路【考点】本题考查了正方体的展开图,用空间想象去解决正方体的滚动是解题的关键5、54【解

    13、析】【详解】试题解析:由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;第一层有7个正方体,第二层有2个正方体,第三层有1个正方体,共有10个正方体,搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大正方体,搭成的大正方体的共有444=64个小正方体,至少还需要64-10=54个小正方体【考点】先由主视图、左视图、俯视图求出原来的几何体共有10个正方体,再根据搭成的大正方体的共有444=64个小正方体,即可得出答案本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大正方体共有多少个小正方体三、解答题1、(1

    14、);(2);(3)画图见解析【解析】【分析】(1)由主视图可知,第二列小立方体的个数均为1,第3列小正方体的个数为3,从而可得答案; (2)第一列小立方体的个数最少为2+1+1,最多为2+2+2,那么加上其它两列小立方体的个数即可得到答案; (3)左视图有3列,每列小正方形数目分别为3,1,2,从而可得左视图【详解】解:(1)由主视图可知,第二列小立方体的个数均为1,第3列小正方体的个数为3,所以:故答案为:3,1,1;(2)由第一列小立方体的个数最少为2+1+1,最多为2+2+2,所以这个几何体最少由4+2+3=9个小立方块搭成;这个几何体最多由6+2+3=11个小立方块搭成;故答案为:(3

    15、)由左视图有3列,每列小正方形数目分别为3,1,2,如图所示: 【考点】本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图;注意主视图主要告知组成的几何体的层数和列数2、(1)圆柱,(2)六棱柱,(3)圆锥.【解析】【分析】根据平面展开图的特征作答即可【详解】一个长方形和两个圆折叠后,能围成的几何体是圆柱,所以第一个图形为圆柱;第二个图形折叠后能折成六棱柱;第三个图形,由一个扇形和一个圆形能围成圆锥故答案为 圆柱;六棱柱;圆锥.【考点】本题考查了展开图折叠成几何体,熟记常见立体图形的平面展开图的特征是解题的关键3、 (1)A(2)22【解析】【分析】

    16、(1)先确定长方体展开图的对面,然后根据字母Q在上表面,即可确定下表面;(2)利用展开图上下面与宽面组成长方形面积+两个长面面积计算即可(1)解:根据长方体展开图的对面间隔一个小长方形,B与Q是对面,A与T是对面,P与R是对面,字母Q表示包装盒的上表面,下表面为B,故选择A;(2)解:包装盒的表面积为:28+213=16+6=22【考点】本题考查长方体平面展开图,表面面积,掌握长方体平面展开图的特征,表面面积求法是解题关键4、 (1)F面(2)“C”面或“E面(3)“B面或“D面【解析】【分析】根据长方体表面展开图的特征进行判断即可(1)根据“相间、端是对面”可知,“”与“”相对,“”与“”相对,“”与“相对,所以面A在长方体的底部,那么面会在它的上面;(2)若面在前面,左面是面,则“”在后面,“”在右面,此时“”在上面,“”在下面,或“”在上面,“”在下面;答:如果面在前面,从左面看是面,那么“”面或“”面会在上面;(3)从右面看是面,面在左面,则“”面或“”面在上面【考点】本题考查长方体的展开与折叠,掌握长方体表面展开图的特征是解决问题的关键5、(1)圆柱;(2)1000【解析】【分析】【详解】解:(1)根据三视图的知识,主视图以及左视图都为矩形,俯视图是一个圆,故可判断出该几何体为圆柱 (2)根据圆柱的全面积公式可得,2040+2102=1000

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年北师大版七年级数学上册第一章丰富的图形世界定向练习试题(含答案解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-698584.html
    相关资源 更多
  • 专题10推理篇——判断与推理(讲义)(原卷版).docx专题10推理篇——判断与推理(讲义)(原卷版).docx
  • 专题10截长补短模型综合应用(专项训练)(能力提升)(解析版).docx专题10截长补短模型综合应用(专项训练)(能力提升)(解析版).docx
  • 专题10截长补短模型综合应用(专项训练)(能力提升)(原卷版).docx专题10截长补短模型综合应用(专项训练)(能力提升)(原卷版).docx
  • 专题10定语从句(练习)(原卷版).docx专题10定语从句(练习)(原卷版).docx
  • 专题10天体运动(解析版).docx专题10天体运动(解析版).docx
  • 专题10天体运动(原卷版).docx专题10天体运动(原卷版).docx
  • 专题10压强(测试)(解析版).docx专题10压强(测试)(解析版).docx
  • 专题10压强(测试)(原卷版).docx专题10压强(测试)(原卷版).docx
  • 专题10功和机械能(原卷版).docx专题10功和机械能(原卷版).docx
  • 专题10功和机械能 (解析版).docx专题10功和机械能 (解析版).docx
  • 专题10函数综合应用 -【中职专用】中职高考数学二轮复习专项突破.docx专题10函数综合应用 -【中职专用】中职高考数学二轮复习专项突破.docx
  • 专题10函数的图象-2021年新高考数学基础考点一轮复习.docx专题10函数的图象-2021年新高考数学基础考点一轮复习.docx
  • 专题10二次函数交点综合应用(知识解读)-备战2023年中考数学《重难点解读•专项训练》(全国通用)(解析版).docx专题10二次函数交点综合应用(知识解读)-备战2023年中考数学《重难点解读•专项训练》(全国通用)(解析版).docx
  • 专题10二次函数交点综合应用(知识解读)-备战2023年中考数学《重难点解读•专项训练》(全国通用)(原卷版).docx专题10二次函数交点综合应用(知识解读)-备战2023年中考数学《重难点解读•专项训练》(全国通用)(原卷版).docx
  • 专题10二次函数交点综合应用(专项训练)(解析版).docx专题10二次函数交点综合应用(专项训练)(解析版).docx
  • 专题10二次函数交点综合应用(专项训练)(原卷版).docx专题10二次函数交点综合应用(专项训练)(原卷版).docx
  • 专题102020-2021年广东省中考英语考前必背书面表达50篇.docx专题102020-2021年广东省中考英语考前必背书面表达50篇.docx
  • 专题10 三角函数【多选题】(解析版).docx专题10 三角函数【多选题】(解析版).docx
  • 专题10 三角函数【多选题】(原卷版).docx专题10 三角函数【多选题】(原卷版).docx
  • 专题10 2022年中考英语易错题精讲精练-动词时态.docx专题10 2022年中考英语易错题精讲精练-动词时态.docx
  • 专题1.复分解反应与离子共存(讲义)-2022-2023学年九年级上册科学讲练课堂(浙教版).docx专题1.复分解反应与离子共存(讲义)-2022-2023学年九年级上册科学讲练课堂(浙教版).docx
  • 专题1.名词考点聚焦和精讲 (原卷版).docx专题1.名词考点聚焦和精讲 (原卷版).docx
  • 专题1.9 正方形的性质与判定(知识讲解)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx专题1.9 正方形的性质与判定(知识讲解)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx
  • 专题1.9 数轴(巩固篇)(专项练习)-2022-2023学年七年级数学上册基础知识专项讲练(人教版).docx专题1.9 数轴(巩固篇)(专项练习)-2022-2023学年七年级数学上册基础知识专项讲练(人教版).docx
  • 专题1.9 探索三角形全等的条件(ASAAAS)(直通中考)-2023-2024学年八年级数学上册基础知识专项突破讲与练(苏科版).docx专题1.9 探索三角形全等的条件(ASAAAS)(直通中考)-2023-2024学年八年级数学上册基础知识专项突破讲与练(苏科版).docx
  • 专题1.9 平行线中的折叠问题(分层练习)(基础练)-2023-2024学年七年级数学下册全章复习与专题突破讲与练(浙教版).docx专题1.9 平行线中的折叠问题(分层练习)(基础练)-2023-2024学年七年级数学下册全章复习与专题突破讲与练(浙教版).docx
  • 专题1.9 二次根式的加减(巩固篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx专题1.9 二次根式的加减(巩固篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx
  • 专题1.9 二次函数的图象与性质常考知识点分类专题(培优练)-2023-2024学年九年级数学上册全章复习与专题突破讲与练(浙教版).docx专题1.9 二次函数的图象与性质常考知识点分类专题(培优练)-2023-2024学年九年级数学上册全章复习与专题突破讲与练(浙教版).docx
  • 专题1.9 二次函数y=ax² k(a≠0)的图象与性质(巩固篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(浙教版).docx专题1.9 二次函数y=ax² k(a≠0)的图象与性质(巩固篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(浙教版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1