分享
分享赚钱 收藏 举报 版权申诉 / 24

类型2022年综合复习人教版九年级数学上册期中考试题 A卷(含详解).docx

  • 上传人:a****
  • 文档编号:709410
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:24
  • 大小:409.46KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年综合复习人教版九年级数学上册期中考试题 A卷含详解 2022 综合 复习 人教版 九年级 数学 上册 期中 考试题 详解
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中考试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,在方格纸上建立的平面直角坐标系中,将绕点按顺时针方向旋转90,得到,

    2、则点的坐标为()ABCD2、若P(x,3)与点Q(4,y)关于原点对称,则xy的值是()A12B12C64D643、如图,G是正方形ABCD内一点,以GC为边长,作正方形GCEF,连接BG和DE,试用旋转的思想说明线段BG与DE的关系()ADEBGBDEBGCDEBGDDEBG4、如图,在方格纸中,将绕点按顺时针方向旋转90后得到,则下列四个图形中正确的是( )ABCD 线 封 密 内 号学级年名姓 线 封 密 外 5、向空中发射一枚炮弹,第秒时的高度为米,且高度与时间的关系为,若此炮弹在第秒与第秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )A第秒B第秒C第秒D第秒二、多选题(5小题

    3、,每小题4分,共计20分)1、如图,抛物线y=ax2+bx+c(a0)的对称轴为直线x=1,与x轴的一个交点坐标为(1,0),其部分图象如图所示,下列结论中正确的是()A4acb2B方程y=ax2+bx+c的两个根是x1=1,x2=3C3a+c0D当y0时,x的取值范围是1x3E当x0时,y随x增大而增大2、已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论正确的有()AA、B关于x轴对称;BA、B关于y轴对称;CA、B关于原点对称;D若A、B之间的距离为43、下面是某同学在一次数学测验中解答的填空题,其中答对的是( )A若x2=4,则x=2B若3x2=6,则x=2Cx2 +

    4、x-k=0的一个根是1,则k=2D若分式的值为零,则x=24、请观察下列美丽的图案,你认为既是轴对称图形,又是中心对称图形的是()ABCD5、如图是抛物线y1ax2+bx+c(a0)图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点B(4,0),直线y2mx+n(m0)与抛物线交于A,B两点,下列结论中正确的是()A2a+b0Bm+n3C抛物线与x轴的另一个交点是(1,0)D方程ax2+bx+c3有两个相等的实数根E当1x4时,有y2y1第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如果关于x的方程x23x+k0(k为常数)有两个相等的实数根,那么k的值是

    5、_2、抛物线的图象和轴有交点,则的取值范围是_3、二次函数yax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是_ 线 封 密 内 号学级年名姓 线 封 密 外 4、若代数式有意义,则x的取值范围是 _5、在平面直角坐标系中,将点A先向右平移4个单位,再向下平移6个单位得到点B,如果点A和点B关于原点对称,那么点A的坐标是_四、解答题(5小题,每小题8分,共计40分)1、某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本(

    6、1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(不需要求自变量取值范围)(2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?(3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?2、解方程(1)2x24x10 (2)3x(x1)22x3、顶点为D的抛物线yx2+bx+c交x轴于A、B(3,0),交y轴于点C,直线yx+m经过点C,交x轴于E(4,0)(1)求出抛物线的解析式;(2)如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,

    7、垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;(3)点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线yx+m于G,交抛物线于H,连接CH,将CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标4、用适当的方法解方程:(1)(1-x)2-2(x-1)-350;(2)x2+4x-205、解方程(组):(1)(2);(3)x(x7)8(7x).-参考答案-一、单选题1、A【解析】【分析】根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B的坐标即可【详解】ABO如图所示,点B(2,1)故选A 线 封 密 内 号学级

    8、年名姓 线 封 密 外 【考点】本题考查了坐标与图形变化,熟练掌握网格结构,作出图形是解题的关键2、A【解析】【分析】直接利用关于原点对称点的性质得出x,y的值,进而得出答案【详解】与点关于原点对称,故选A【考点】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号是解题关键3、A【解析】【分析】根据四边形ABCD为正方形,得出BC=DC,BCD=90,根据四边形CEFG为正方形,得出GC=EC,GCE=90,再证BCG=DCE,BCG与DCE具有可旋转的特征即可【详解】解:四边形ABCD为正方形,BC=DC,BCD=90,四边形CEFG为正方形,GC=EC,GCE=90,BCG+GCD

    9、=GCD+DCE=90,BCG=DCE,BCG绕点C顺时针方向旋转90得到DCE,BG=DE,故选项A【考点】本题考查图形旋转特征,正方形性质,三角形全等条件,同角的余角性质,掌握图形旋转特征,正方形性质,三角形全等条件是解题关键4、B【解析】【分析】根据绕点按顺时针方向旋转90逐项分析即可【详解】A、是由关于过B点与OB垂直的直线对称得到,故A选项不符合题意;B、是由绕点按顺时针方向旋转90后得到,故B选项符合题意;C、与对应点发生了变化,故C选项不符合题意;D、是由绕点按逆时针方向旋转90后得到,故D选项不符合题意故选:B 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查旋转

    10、变换解题的关键是弄清旋转的方向和旋转的度数5、C【解析】【分析】根据二次函数图像的对称性,求出对称轴,即可得到答案.【详解】解:根据题意,炮弹在第秒与第秒时的高度相等,抛物线的对称轴为:秒,第12秒距离对称轴最近,上述时间中,第12秒时炮弹高度最高;故选:C.【考点】本题考查了二次函数的性质和对称性,解题的关键是掌握二次函数的对称性进行解题.二、多选题1、ABE【解析】【分析】根据二次函数开口方向、对称轴、与坐标轴的交点进行判断即可;【详解】由抛物线图象与x轴有2个不同的交点可得,即4acb2,故A正确;抛物线的对称轴为直线,且与x轴交于一点,则另一点为,方程的两个根是,故B正确;由对称轴可得

    11、,即抛物线,由抛物线经过代入,则,即,故C错误;当时,抛物线的图象在x轴上方,则x的取值范围是,故D错误;当时,y随x的增大而增大,故E正确;故选ABE【点睛】本题主要考查了根与系数的关系、二次函数图象与系数的关系、抛物线与坐标轴的交点,准确分析判断是解题的关键2、BD【解析】【分析】根据点坐标关于原点对称、轴对称的特点,求出对应点坐标即可【详解】点A(-2,3)关于x轴对称的点为(-2,-3),故A错误点A(-2,3)关于y轴对称的点为(2,3),故B正确点A(-2,3)关于原点对称的点为(2,-3),故C错误点A、点B的纵坐标相同,故A、B之间的距离为 ,故D正确故选BD【点睛】本题考查了

    12、点坐标关于x,y轴对称,关于原点中心对称的特点,以及两点间距离公式,熟悉对应知识点是解决本题的关键 线 封 密 内 号学级年名姓 线 封 密 外 3、CD【解析】【分析】对于一元二次方程x2=4和3x2=6x分别解答即可求得x的值,从而判断是否正确;对于方程x2+x-k=0求k的值,可以将x=1代入原方程即可求得k的值;若原分式为0,则分母不能为0,即分子为0,所以x=2,当x=2时,分母也为0,所以原分式不能为0【详解】解:A、若x2=4,解得:x=2或-2,故本选项错误;B、若3x2=6x,则3x2-6x=0,即3x(x-2)=0,解得:x=0或2,故本选项错误;C、将x=1代入原方程可得

    13、:k=2,故本选项正确;D、若分式的值为零,则x(x-2)=0且x0,解得x=2;故本选项正确;故选CD4、AB【解析】【分析】根据轴对称图形(如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合)和中心对称图形(把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合)的定义进行判断【详解】A选项:可以找到多条对称轴,是轴对称图形;绕某一点旋转180,旋转后的图形能够与原来的图形重合,是中心对称图形,所以符合题意;B选项:可以找到多条对称轴,是轴对称图形;绕某一点旋转180,旋转后的图形能够与原来的图形重合,是中心对称图形,所以符合题意;C选项:可以找到多条对称轴,是轴对称图形;

    14、绕某一点旋转180,旋转后的图形不能够与原来的图形重合,不是中心对称图形,所以不符合题意;D选项:可以找到多条对称轴,是轴对称图形;绕某一点旋转180,旋转后的图形不能够与原来的图形重合,不是中心对称图形,所以不符合题意故选:AB【点睛】考查中心对称图形和轴对称图形的概念,解题关键是熟记其概念:把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形5、ABD【解析】【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系一一判断即可【详解】解:A、抛物线对称轴

    15、为直线,故A正确;B、直线y2mx+n(m0)与抛物线交于A,B两点,当时,故B正确;C、抛物线与x轴的一个交点为,对称轴为,抛物线与x轴的另一个交点是,故C错误;D、方程ax2+bx+c3从函数角度可以看作是y1ax2+bx+c与直线求交点,从图像可以知道,抛物线顶点为,从抛物线与直线有且只有一个交点,故方程ax2+bx+c3有两个相等的实数根,故D正确;E、由图像可知,当时,故E错误; 线 封 密 内 号学级年名姓 线 封 密 外 故选:ABD【点睛】本题考查了二次函数的性质、方程与二次函数的关系、函数与不等式的关系等知识,解答关键是数形结合三、填空题1、【解析】【分析】根据判别式的意义得

    16、到=(-3)2-4k=0,然后解一元一次方程即可【详解】解:根据题意得=(-3)2-4k=0,解得k=故答案为【考点】本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b2-4ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根2、且【解析】【分析】由题意知,计算求解即可【详解】解:由题意知,解得故答案为:且【考点】本题考查了二次函数与轴的交点个数解题的关键在于熟练掌握二次函数与轴的交点个数3、(1,0)【解析】【分析】根据表中数据得到点(-2,-3)和(0,-3)对称点,从而得到抛物线的对称轴为直线x=-1,再利用表中数据得到抛物线与x轴的

    17、一个交点坐标为(-3,0),然后根据抛物线的对称性就看得到抛物线与x轴的一个交点坐标【详解】x=-2,y=-3;x=0时,y=-3,抛物线的对称轴为直线x=-1,抛物线与x轴的一个交点坐标为(-3,0),抛物线与x轴的一个交点坐标为(1,0)故答案为(1,0)【考点】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化解关于x的一元二次方程即可求得交点横坐标也考查了二次函数的性质4、3x且x【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】根据二次根式的性质,被开方数大于等于0;分母中有字母,分母不为0【详解】解:若代数

    18、式有意义,必有,解得解移项得两边平方得整理得解得解集为3x且x故答案为:3x且x【考点】本题考查了二次根式的概念:式子(a0)叫二次根式,(a0)是一个非负数注意:二次根式中的被开方数必须是非负数,否则二次根式无意义;当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于05、【解析】【分析】先按题目要求对A、B点进行平移,再根据原点对称的特征:横纵坐标互为相反数进行列方程,求解【详解】设,向右平移4个单位,再向下平移6个单位得到 A、B关于原点对称,解得,故答案为:【考点】本题考查点的平移和原点对称的性质,掌握这些是解题关键四、解答题1、(1);(2)70元;(3)80元【解析】【分析】

    19、(1)明确题意,找到等量关系求出函数关系式即可;(2)根据题意,按照等量关系“销售量(售价成本)”列出方程,求解即可得到该商品此时的销售单价;(3)设每月所获利润为,按照等量关系列出二次函数,并根据二次函数的性质求得最值即可【详解】解:(1)依题意得, 线 封 密 内 号学级年名姓 线 封 密 外 与的函数关系式为;(2)依题意得,即,解得:,当该商品每月销售利润为,为使顾客获得更多实惠,销售单价应定为元;(3)设每月总利润为,依题意得,此图象开口向下当时, 有最大值为:(元),当销售单价为元时利润最大,最大利润为元,故为了每月所获利润最大,该商品销售单价应定为元【点睛】本题考查了二次函数在实

    20、际生活中的应用,根据题意找到等量关系并掌握二次函数求最值的方法是解题的关键2、 (1) x11+ ,x21- ;(2) ,【解析】【分析】(1)用配方法求解即可;(2)先移项,然后用因式分解法求解即可【详解】(1)2x24x10,移项得:2x24x1,二次项系数化为1得:,配方得:,(x1)2,即x1,故原方程的解是:x11+ ,x21- ;(2)3x(x1)22x,移项得:3x(x1)+2x20,即3x(x1)+2(x1)0,分解因式得:(x1)(3x+2)0,即3x+20,x10,解得: ,【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活

    21、选择合适的方法是解答本题的关键3、 (1)yx2+2x+3;(2)S(x)2+;当x时,S有最大值,最大值为;(3)存在,点P的坐标为(4,0)或(,0). 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】(1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式(2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CGHG,列等式求解即可【详解】(1)将点E代入直线解析式中,04

    22、+m,解得m3,解析式为yx+3,C(0,3),B(3,0),则有,解得,抛物线的解析式为:yx2+2x+3;(2)yx2+2x+3(x1)2+4,D(1,4),设直线BD的解析式为ykx+b,代入点B、D,解得,直线BD的解析式为y2x+6,则点M的坐标为(x,2x+6),S(3+62x)x(x)2+,当x时,S有最大值,最大值为(3)存在,如图所示,设点P的坐标为(t,0),则点G(t,t+3),H(t,t2+2t+3),HG|t2+2t+3(t+3)|t2t| 线 封 密 内 号学级年名姓 线 封 密 外 CGt,CGH沿GH翻折,G的对应点为点F,F落在y轴上,而HGy轴,HGCF,H

    23、GHF,CGCF,GHCCHF,FCHCHG,FCHFHC,GCHGHC,CGHG,|t2t|t,当t2tt时,解得t10(舍),t24,此时点P(4,0)当t2tt时,解得t10(舍),t2,此时点P(,0)综上,点P的坐标为(4,0)或(,0)【点睛】此题考查了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CGHG为解题关键4、 (1)x18,x2-4(2)x1-2,x2-2【解析】【分析】(1)用分解因式的方法解答,分解因式用十字相乘法分解;(2)用配方法解答,配方前先把-2移项,而后配方,等号左右斗殴配上一次项系数一半的平方(1)原方程可变形为

    24、(x-1-7)(x-1+5)0,x-80或x+40,x18,x2-4;(2)移项,得x2+4x2,配方,得x2+4x+46,即(x+2)26,两边开平方,得x+2,x1-2,x2-2【点睛】本题考查了用适当方法解一元二次方程,解决问题的关键是先考虑直接开平方法分解因式法,而后再考虑配方法或公式法5、 (1)(2)x(3)x17,x28 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】(1)根据代入消元法,可得方程组的解;(2)根据等式的性质,化为整式方程,根据解整式方程,可得答案;(3)先移项,再提公因式,再求解即可(1)由,得y3x4将代入,得x2(3x4)3,解得x1,将x1代入,解得y1.所以原方程组的解为;(2);解:方程两边都乘(x1)(x1),得(x1)23(x1)(x1),解得x.经检验,x是原方程的解(3)x(x7)8(7x).解:原方程可变形为x(x7)8(x7)0,(x7)(x8)0.x70,或x80.x17,x28.【点睛】本题考查了解二元一次方程组、分式方程及一元二次方程,利用等式的性质得出整式方程是解题关键,要检验分时方程的根

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年综合复习人教版九年级数学上册期中考试题 A卷(含详解).docx
    链接地址:https://www.ketangku.com/wenku/file-709410.html
    相关资源 更多
  • 专题提升Ⅳ 带电粒子在组合场中的运动(解析版).docx专题提升Ⅳ 带电粒子在组合场中的运动(解析版).docx
  • 专题提升Ⅳ 带电粒子在组合场中的运动(原卷版).docx专题提升Ⅳ 带电粒子在组合场中的运动(原卷版).docx
  • 专题提升Ⅲ 带电粒子在有界匀强磁场中的运动(解析版).docx专题提升Ⅲ 带电粒子在有界匀强磁场中的运动(解析版).docx
  • 专题提升08 传染病和免疫.docx专题提升08 传染病和免疫.docx
  • 专题提升07 生物进化.docx专题提升07 生物进化.docx
  • 专题提升05 生物的生殖和发育.docx专题提升05 生物的生殖和发育.docx
  • 专题提升03  绿色植物.docx专题提升03  绿色植物.docx
  • 专题提升01 生态系统.docx专题提升01 生态系统.docx
  • 专题提升(一) 古代中国的政治制度(word教参)-2023高考历史(专题史)一轮复习【优化指导】高中总复习·第1轮(全国版).docx专题提升(一) 古代中国的政治制度(word教参)-2023高考历史(专题史)一轮复习【优化指导】高中总复习·第1轮(全国版).docx
  • 专题提升 解直角三角形的实际应用(30题)(解析版).docx专题提升 解直角三角形的实际应用(30题)(解析版).docx
  • 专题提升 解直角三角形的实际应用(30题)(原卷版).docx专题提升 解直角三角形的实际应用(30题)(原卷版).docx
  • 专题提升 相似三角形的判定与性质(30题)(解析版).docx专题提升 相似三角形的判定与性质(30题)(解析版).docx
  • 专题提升 相似三角形的判定与性质(30题)(原卷版).docx专题提升 相似三角形的判定与性质(30题)(原卷版).docx
  • 专题提升 实际问题与反比例函数及其综合应用(30题)(原卷版).docx专题提升 实际问题与反比例函数及其综合应用(30题)(原卷版).docx
  • 专题技巧二 动量守恒与能量守恒综合问题-2021-2022学年高二物理精讲与精练高分突破考点专题系列(人教版2019选择性必修第一册).docx专题技巧二 动量守恒与能量守恒综合问题-2021-2022学年高二物理精讲与精练高分突破考点专题系列(人教版2019选择性必修第一册).docx
  • 专题归类复习四 时态.docx专题归类复习四 时态.docx
  • 专题归类复习二 宾语从句.docx专题归类复习二 宾语从句.docx
  • 专题归类复习三 定语从句.docx专题归类复习三 定语从句.docx
  • 专题归类复习一 连词与并列句、状语从句.docx专题归类复习一 连词与并列句、状语从句.docx
  • 专题强化训练(六)基本不等式求最值-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx专题强化训练(六)基本不等式求最值-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx
  • 专题强化训练(五)函数应用问题-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx专题强化训练(五)函数应用问题-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx
  • 专题强化训练(二)分类讨论思想-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx专题强化训练(二)分类讨论思想-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx
  • 专题强化训练(九)图像变换及应用-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx专题强化训练(九)图像变换及应用-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx
  • 专题强化训练(三)复合函数问题-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx专题强化训练(三)复合函数问题-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx
  • 专题强化训练(七)三角函数的化简-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx专题强化训练(七)三角函数的化简-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx
  • 专题强化训练(一)二次函数在给定区间上最值问题-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx专题强化训练(一)二次函数在给定区间上最值问题-【新教材】人教A版(2019)高中数学必修第一册期末复习重点知识点.docx
  • 专题强化训练二 解分式方程的和实际应用问题-2022-2023学年八年级数学上册《考点•题型•技巧》精讲与精练高分突破(人教版).docx专题强化训练二 解分式方程的和实际应用问题-2022-2023学年八年级数学上册《考点•题型•技巧》精讲与精练高分突破(人教版).docx
  • 专题强化训练二 等比数列性质和求和常考重难点强化精选必刷题-2022-2023学年高二数学《考点•题型 •技巧》精讲与精练高分突破系列(人教A版2019选择性必修第二册).docx专题强化训练二 等比数列性质和求和常考重难点强化精选必刷题-2022-2023学年高二数学《考点•题型 •技巧》精讲与精练高分突破系列(人教A版2019选择性必修第二册).docx
  • 专题强化训练二 空间向量在点线面距离、存在性问题的应用-2022-2023学年高二数学《考点•题型 •技巧》精讲与精练高分突破系列(人教A版2019选择性必修第一册).docx专题强化训练二 空间向量在点线面距离、存在性问题的应用-2022-2023学年高二数学《考点•题型 •技巧》精讲与精练高分突破系列(人教A版2019选择性必修第一册).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1