分享
分享赚钱 收藏 举报 版权申诉 / 12

类型8.3 分布列(精练)(学生版).docx

  • 上传人:a****
  • 文档编号:777516
  • 上传时间:2025-12-14
  • 格式:DOCX
  • 页数:12
  • 大小:427.79KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    8.3 分布列精练学生版 分布 精练 学生
    资源描述:

    1、8.3 分布列(精练)1(2022春黑龙江哈尔滨)已知随机变量的分布列是:123则()ABC1D2(2023北京顺义)已知离散型随机变量X的分布列如下表,则X的数学期望等于()X012P0.2a0.5A0.3B0.8C1.2D1.33(2023春江苏连云港)若随机事件,则()ABCD4(2023秋云南高三云南师大附中校考阶段练习)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.则在第2次投篮的人是乙的情

    2、况下第一次是甲投篮的概率为()ABCD5(2023春河南)由1,2组成的有重复数字的三位数中,若用A表示事件“十位数字为1”,用B表示事件“百位数字为1”,则()ABCD6(2023秋江西南昌高三南昌市外国语学校校考阶段练习)(多选)已知随机事件满足,则()ABCD相互独立7(2023秋湖北)(多选)设为古典概率模型中的两个随机事件,以下命题正确的为()A若,则当且仅当时,是互斥事件B若,则是必然事件C若,则时是独立事件D若,且,则是独立事件8(2023山东)(多选)某个班级共有学生40人,其中有团员15人全班共分成4个小组,第一小组有学生10人,其中团员x人,如果要在班内选一人当学生代表,在

    3、已知该代表是团员的条件下,这个代表恰好在第一小组内的概率是,则x不可能的值为()A2B3C4D59(2023春安徽滁州)某校开展羽毛球比赛,甲组有选手6名,其中3名男生,3名女生;乙组有选手5名,其中3名男生,2名女生现从甲组随机抽取一人加入乙组,再从乙组随机抽取一人,A表示事件“从甲组随机抽取的一人是女生”,表示事件“从乙组随机抽取的一人是男生”,则()ABCD10(2023秋广东佛山高三统考开学考试)(多选)设A,B是一个随机试验中的两个事件,且,则()ABC D 11(2022安徽安庆)已知,且若,则 12(2023秋河北保定高三校联考开学考试)“摸奖游戏”是商场促销最为常见的形式之一,

    4、某摸奖游戏的规则如下:第一次在装有2个红球、2个白球的A袋中随机取出2个球,第二次在装有1个红球、1个白球、1个黑球的B袋中随机取出1个球,两次取球相互独立,两次取球合在一起称为一次摸奖,取出的3个球的颜色与获得的积分对应如下表.所取球的情况球同色三球均不同色其他情况所获得的积分100600(1)设一次摸奖中所获得的积分为X,求X的分布列和期望;(2)记甲在这次游戏获得0积分为事件M,甲在B袋中摸到黑球为事件N,判断事件M,N是否相互独立,并说明理由.13(2023辽宁大连二十四中校联考模拟预测)大连市是国内知名足球城市,足球氛围浓厚.在2022年第22届卡塔尔足球世界杯阶段,大连二十四中的同

    5、学们对世界杯某一分组内的四支球队进行出线情况分析.已知世界杯小组赛规则如下:小组内四支球队之间进行单循环(每只球队均与另外三只球队进行一场比赛);每场比赛胜者积3分,负者0分;若出现平局,则比赛双方各积1分.现假设组内四支球队战胜或者负于对手的概率均为0.25,出现平局的概率为0.5(1)求某一只球队在参加两场比赛后积分的分布列与数学期望;(2)小组赛结束后,求四支球队积分相同的概率14(2023云南保山)旅游业是保山市特色产业,我市有热海风景区和顺古镇银杏村等多个著名景点.2022年,随着新冠疫情防控常态化,保山市有效统筹疫情防控和经济社会发展,全市文化旅游产业持续复苏,为进一步推动旅游业发

    6、展,市旅游局对市民近半年的旅游情况进行了统计调查,其中去过3个或3个以上景点的称为“旅游达人”,否则称为“非旅游达人”,从参与调查的人群中随机抽取了100人的数据进行统计分析,得到如下列联表:旅游达人非旅游达人合计男2050女15合计100附:参考公式:.0.10.050.010.0050.0012.7063.8416.6357.87910.828(1)请将列联表补充完整,并依据的独立性检验,判断称为“旅游达人”或“非旅游达人”与性别是否有关联?(2)现从抽取的男性人群中,按“旅游达人”和“非旅游达人”这两种类型进行分层抽样抽取5人,然后再从这5人中随机选出3人,设抽到“非旅游达人”的人数为,

    7、求的分布列和数学期望.15(2023春江苏南京)为了迎接4月23日“世界图书日”,我市将组织中学生进行一次文化知识有奖竞赛,竞赛奖励规则如下,得分在内的学生获三等奖,得分在内的学生获二等奖,得分在内的学生获一等奖,其他学生不得奖为了解学生对相关知识的掌握情况,随机抽取100名学生的竞赛成绩,统计如下成绩(分)频数61218341686(1)若现从该样本中随机抽取两名学生的竞赛成绩,求这两名学生中恰有一名学生获奖的概率;(2)若我市所有参赛学生的成绩近似服从正态分布,利用所得正态分布模型解决以下问题:()若我市共有10000名学生参加了竞赛,试估计参赛学生中成绩超过79分的学生数(结果四舍五入到

    8、整数);()若从所有参赛学生中(参赛学生数大于100000)随机抽取3名学生进行访谈,设其中竞赛成绩在64分以上的学生数为,求随机变量的分布列及均值附参考数据:若随机变量服从正态分布,则,16(2023全国高二专题练习)中国制造2025是经国务院总理李克强签批,由国务院于2015年5月印发的部署全面推进实施制造强国的战略文件,是中国实施制造强国战略第一个十年的行动纲领制造业是国民经济的主体,是立国之本、兴国之器、强国之基.发展制造业的基本方针为质量为先,坚持把质量作为建设制造强国的生命线.某制造企业根据长期检测结果,发现生产的产品质量与生产标准的质量差都服从正态分布,并把质量差在内的产品为优等

    9、品,质量差在内的产品为一等品,其余范围内的产品作为废品处理,优等品与一等品统称为正品现分别从该企业生产的正品中随机抽取1000件,测得产品质量差的样本数据统计如下:(1)根据频率分布直方图,求样本平均数;(2)根据大量的产品检测数据,检查样本数据的方差的近似值为100,用样本平均数作为的近似值,用样本标准差s作为的估计值,求该厂生产的产品为正品的概率.(同一组中的数据用该组区间的中点值代表)参考数据:若随机变量服从正态分布,则:,.(3)假如企业包装时要求把3件优等品和4件一等品装在同一个箱子中,质检员每次从箱子中摸出三件产品进行检验,记摸出三件产品中优等品的件数为X,求X的分布列以及期望值.

    10、17(2023北京高三景山学校校考期中)某教育主管部门到一所中学检查学生的体质健康情况.从全体学生中,随机抽取12名进行体质健康测试,测试成绩(百分制)如下626572788686868787889098根据学生体质健康标准,成绩不低于76的为优良. (1)写出这组数据的众数和中位数;(2)将频率视为概率.根据样本估计总体的思想,在该校学生中任选3人进行体质健康测试,求至少有1人成绩是“优良”的概率;(3)从抽取的12人中随机选取3人,记表示成绩“优良”的学生人数,求的分布列及数学期望.1(2022秋广东东莞高三校考阶段练习)(多选)盒子中共有4只黑球,2只白球,现从中不放回地每次任取一球,连

    11、取两次,则下列选项正确的是()A第一次取到黑球的概率为B事件“第一次取到黑球”和“第一次取到白球”互斥不对立C在第一次取到白球的条件下,第二次取到黑球的概率为D第二次取到黑球的概率为2(2023广东佛山统考模拟预测)现随机安排甲、乙等4位同学参加校运会跳高、跳远、投铅球比赛,要求每位同学参加一项比赛,每项比赛至少一位同学参加,事件“甲参加跳高比赛”,事件“乙参加跳高比赛”,事件“乙参加跳远比赛”,则()A事件A与B相互独立B事件A与C为互斥事件CD3(2023山东山东省实验中学校联考模拟预测)某人在次射击中击中目标的次数为,其中,击中奇数次为事件,则()A若,则取最大值时B当时,取得最小值C当

    12、时,随着的增大而增大D当时,随着的增大而减小4(2023全国镇海中学校联考模拟预测)(多选)已知是两个事件,且,则事件相互独立的充分条件可以是()ABCD5(2023山东淄博统考三模)(多选)某种子站培育出A、B两类种子,为了研究种子的发芽率,分别抽取100粒种子进行试种,得到如下饼状图与柱状图:用频率估计概率,且每一粒种子是否发芽均互不影响,则()A若规定种子发芽时间越短,越适合种植,则从5天内的发芽率来看,B类种子更适合种植B若种下12粒A类种子,则有9粒种子5天内发芽的概率最大C从样本A、B两类种子中各随机取一粒,则这两粒种子至少有一粒8天内未发芽的概率是0.145D若种下10粒B类种子

    13、,5至8天发芽的种子数记为X,则6(2023湖南常德常德市一中校考模拟预测)(多选)设,是一个随机试验中的两个事件,且,则()ABCD7(2023海南海口市琼山华侨中学校联考模拟预测)(多选)已知小李每天在上班路上都要经过甲、乙两个路口,且他在甲、乙两个路口遇到红灯的概率分别为,p记小李在星期一到星期五这5天每天上班路上在甲路口遇到红灯个数之和为,在甲、乙这两个路口遇到红灯个数之和为,则()ABC小李星期一到星期五上班路上恰有3天至少遇到一次红灯的概率的最大值为D当时,8(2023山东泰安统考模拟预测)某蓝莓基地种植蓝莓,按个蓝莓果重量(克)分为级:的为级,的为级,的为级,的为级,的为废果将级

    14、与级果称为优等果已知蓝莓果重量服从正态分布对该蓝莓基地的蓝莓进行随机抽查,每次抽出个蓝莓果记每次抽到优等果的概率为(可精确到)若为优等果,则抽查终止,否则继续抽查直到抽出优等果,但抽查次数最多不超过次,若抽查次数的期望值不超过,的最大值为 附:,9(2023河北统考模拟预测)随着网络技术的迅速发展,直播带货成为网络销售的新梁道.某服装品牌为了给所有带货网络平台分配合理的服装量,随机抽查了100个带货平台的销售情况,销售每件服装平均所需时间情况如下频率分布直方图.(1)求的值,并估计出这100个带货平台销售每件服装所用时间的平均数和中位数;(2)假设该服装品牌所有带货平台销售每件服装平均所需时间

    15、服从正态分布,其中近似为,.若该服装品牌所有带货平台约有10000个,销售每件服装平均所需时间在范围内的平台属于“合格平台”.为了提升平台销售业务,该服装品牌总公司对平台进行奖罚制度,在时间大于44.4分钟的平台中,每个平台每卖一件扣除;在时间小于14.4分钟的平台中,每卖一件服装进行奖励元,以资鼓励;对于“合格平台”每卖一件服装奖励1元.求该服装品牌总公司在所有平台均销售一件服装时总共需要准备多少资金作为本次平台销售业务提升.(结果保留整数)附:若服从正态分布,则,.参考数据:.10(2023全国学军中学校联考模拟预测)双淘汰赛制是一种竞赛形式,比赛一般分两个组进行,即胜者组与负者组.在第一轮比赛后,获胜者编入胜者组,失败者编入负者组继续比赛.之后的每一轮,在负者组中的失败者将被淘汰;胜者组的情况也类似,只是失败者仅被淘汰出胜者组降入负者组,只有在负者组中再次失败后才会被淘汰出整个比赛.A、B、C、D四人参加的双淘汰赛制的流程如图所示,其中第6场比赛为决赛.(1)假设四人实力旗鼓相当,即各比赛每人的胜率均为50%,求:队伍A和D在决赛中过招的概率;D在一共输了两场比赛的情况下,成为亚军的概率;(2)若A的实力出类拔萃,即有A参加的比赛其胜率均为75%,其余三人实力旗鼓相当,求D进入决赛且先前与对手已有过招的概率.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:8.3 分布列(精练)(学生版).docx
    链接地址:https://www.ketangku.com/wenku/file-777516.html
    相关资源 更多
  • 专题31二次函数与圆压轴问题-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(原卷版).docx专题31二次函数与圆压轴问题-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(原卷版).docx
  • 专题31不等式(学生版)备战2021年高中数学联赛之1981-2020年高中数学联赛二试试题分专题训练.docx专题31不等式(学生版)备战2021年高中数学联赛之1981-2020年高中数学联赛二试试题分专题训练.docx
  • 专题31三角形与新定义综合问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(解析版).docx专题31三角形与新定义综合问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(解析版).docx
  • 专题31三角形与新定义综合问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx专题31三角形与新定义综合问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx
  • 专题31 高考听力测试-2021年高考英语题型大冲关(上海专用).docx专题31 高考听力测试-2021年高考英语题型大冲关(上海专用).docx
  • 专题31 选择性必修三Unit1基础知识复习-2023年高考英语一轮复习基础知识 基本能力双清(译林版2020).docx专题31 选择性必修三Unit1基础知识复习-2023年高考英语一轮复习基础知识 基本能力双清(译林版2020).docx
  • 专题31 运用构造法研究函数的性质(教师版).docx专题31 运用构造法研究函数的性质(教师版).docx
  • 专题31 运用构造法研究函数的性质(学生版).docx专题31 运用构造法研究函数的性质(学生版).docx
  • 专题31 生活故事-备战2022高考英语完形填空话题分类训练(高考真题 各地模拟题).docx专题31 生活故事-备战2022高考英语完形填空话题分类训练(高考真题 各地模拟题).docx
  • 专题31 抛物线及其性质(教师版).docx专题31 抛物线及其性质(教师版).docx
  • 专题31 抛物线及其性质(学生版).docx专题31 抛物线及其性质(学生版).docx
  • 专题31 抖音微信微博等短视频通讯媒体-备战2023年中考英语阅读理解热点话题分类训练(中考真题 名校最新模拟题).docx专题31 抖音微信微博等短视频通讯媒体-备战2023年中考英语阅读理解热点话题分类训练(中考真题 名校最新模拟题).docx
  • 专题31 战后世界格局与当今世界的主题-【口袋书】中考历史与社会背诵手册(人教版新课程标准).docx专题31 战后世界格局与当今世界的主题-【口袋书】中考历史与社会背诵手册(人教版新课程标准).docx
  • 专题31 对数单身狗、指数找朋友-2022年高考数学优拔尖必刷压轴题(选择题、填空题)(新高考地区专用).docx专题31 对数单身狗、指数找朋友-2022年高考数学优拔尖必刷压轴题(选择题、填空题)(新高考地区专用).docx
  • 专题31 对数单身狗 指数找朋友-2023年高考数学优拔尖核心压轴题(选择、填空题)(新高考地区专用).docx专题31 对数单身狗 指数找朋友-2023年高考数学优拔尖核心压轴题(选择、填空题)(新高考地区专用).docx
  • 专题31 娱乐活动-备战2022高考英语阅读理解热点话题 体裁分类训练(高考模拟 名校真题).docx专题31 娱乐活动-备战2022高考英语阅读理解热点话题 体裁分类训练(高考模拟 名校真题).docx
  • 专题31 圆中的重要模型之四点共圆模型(解析版).docx专题31 圆中的重要模型之四点共圆模型(解析版).docx
  • 专题31 圆中的重要模型之四点共圆模型(原卷版).docx专题31 圆中的重要模型之四点共圆模型(原卷版).docx
  • 专题31 四边形综合练习(基础)-冲刺2021年中考几何专项复习(解析版).docx专题31 四边形综合练习(基础)-冲刺2021年中考几何专项复习(解析版).docx
  • 专题31 四边形综合练习(基础)-冲刺2021年中考几何专项复习(原卷版).docx专题31 四边形综合练习(基础)-冲刺2021年中考几何专项复习(原卷版).docx
  • 专题31 十字相乘法因式分解(解析版).docx专题31 十字相乘法因式分解(解析版).docx
  • 专题31 利用均值和方差的性质求解新的均值和方差(教师版).docx专题31 利用均值和方差的性质求解新的均值和方差(教师版).docx
  • 专题31 二次函数与四边形面积问题-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版) .docx专题31 二次函数与四边形面积问题-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版) .docx
  • 专题31 二次函数与四边形面积问题-2022年中考数学之二次函数重点题型专题(全国通用版)(原卷版).docx专题31 二次函数与四边形面积问题-2022年中考数学之二次函数重点题型专题(全国通用版)(原卷版).docx
  • 专题31 中考热点新定义问题专项训练(解析版).docx专题31 中考热点新定义问题专项训练(解析版).docx
  • 专题31 中考热点新定义问题专项训练(原卷版).docx专题31 中考热点新定义问题专项训练(原卷版).docx
  • 专题31 中国的外交(知识清单)-【口袋书】2024年高考政治一轮复习(新高考通用).docx专题31 中国的外交(知识清单)-【口袋书】2024年高考政治一轮复习(新高考通用).docx
  • 专题31 中国的外交 .docx专题31 中国的外交 .docx
  • 专题31 与圆有关的计算(解析版).docx专题31 与圆有关的计算(解析版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1