分享
分享赚钱 收藏 举报 版权申诉 / 5

类型《创新设计-课堂讲义》2016-2017学年高中数学(人教版选修1-1)课时作业:第3章 导数及其应用3.3.2 WORD版含答案.docx

  • 上传人:a****
  • 文档编号:787712
  • 上传时间:2025-12-14
  • 格式:DOCX
  • 页数:5
  • 大小:193.68KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    创新设计-课堂讲义
    资源描述:

    1、3.3.2函数的极值与导数课时目标1.了解函数在某点取得极值的必要条件和充分条件.2.会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次)1若函数yf(x)在点xa的函数值f(a)比它在点xa附近其他点的函数值都小,f(a)0,而且在点xa附近的左侧_,右侧_类似地,函数yf(x)在点xb的函数值f(b)比它在点xb附近其他点的函数值都大,f(b)0,而且在点xb附近的左侧_,右侧_我们把点a叫做函数yf(x)的_,f(a)叫做函数yf(x)的_;点b叫做函数yf(x)的_,f(b)叫做函数yf(x)的_极小值点、极大值点统称为_,极大值和极小值统称为_极值反映了函数在_的大小情况,

    2、刻画的是函数的_性质2函数的极值点是_的点,导数为零的点_(填“一定”或“不一定”)是函数的极值点3一般地,求可导函数f(x)的极值的方法是:解方程f(x)0.当f(x0)0时:(1)如果在x0附近的左侧_,右侧_,那么f(x0)是_;(2)如果在x0附近的左侧_,右侧_,那么f(x0)是_;(3)如果f(x)在点x0的左右两侧符号不变,则f(x0)_一、选择题1. 函数f(x)的定义域为R,导函数f(x)的图象如图,则函数f(x)()A无极大值点,有四个极小值点B有三个极大值点,两个极小值点C有两个极大值点,两个极小值点D有四个极大值点,无极小值点2已知函数f(x),xR,且在x1处,f(x

    3、)存在极小值,则()A当x(,1)时,f(x)0;当x(1,)时,f(x)0;当x(1,)时,f(x)0C当x(,1)时,f(x)0D当x(,1)时,f(x)0;当x(1,)时,f(x)0时有()A极小值B极大值C既有极大值又有极小值D极值不存在4函数f(x)的定义域为(a,b),导函数f(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点()A1个 B2个 C3个 D4个5函数f(x)x33bx3b在(0,1)内有且只有一个极小值,则()A0b1 Bb0 Db6已知f(x)x3ax2(a6)x1有极大值和极小值,则a的取值范围为()A1a2 B3a2Ca2 Da6

    4、题号123456答案二、填空题7若函数f(x)在x1处取极值,则a_.8函数f(x)ax3bx在x1处有极值2,则a、b的值分别为_、_.9函数f(x)x33a2xa(a0)的极大值为正数,极小值为负数,则a的取值范围是_三、解答题10求下列函数的极值(1)f(x)x312x;(2)f(x)xex.11设函数f(x)x3x26xa.(1)对于任意实数x,f(x)m恒成立,求m的最大值;(2)若方程f(x)0有且仅有一个实根,求a的取值范围能力提升12已知函数f(x)(xa)2(xb)(a,bR,ab)(1)当a1,b2时,求曲线yf(x)在点(2,f(2)处的切线方程;(2)设x1,x2是f(

    5、x)的两个极值点,x3是f(x)的一个零点,且x3x1,x3x2.证明:存在实数x4,使得x1,x2,x3,x4按某种顺序排列后构成等差数列,并求x4.1求函数的极值问题要考虑极值取到的条件,极值点两侧的导数值异号2极值问题的综合应用主要涉及到极值的正用和逆用,以及与单调性问题的综合,利用极值可以解决一些函数解析式以及求字母范围的问题33.2函数的极值与导数答案知识梳理1f(x)0f(x)0f(x)0f(x)0极大值(2)f(x)0极小值(3)不是极值作业设计1C2Cf(x)在x1处存在极小值,x1时,f(x)1时,f(x)0.3Af(x)1,由f(x)0,得x1或x0,x1.由得0x1,即在

    6、(0,1)内f(x)0,f(x)在(0,)上有极小值4Af(x)的极小值点左边有f(x)0,因此由f(x)的图象知只有1个极小值点5Af(x)3x23b,要使f(x)在(0,1)内有极小值,则,即,解得0b0时,图象与x轴的左交点两侧f(x)的值分别大于零、小于零,右交点左右两侧f(x)的值分别小于零、大于零所以才会有极大值和极小值4a212(a6)0得a6或a0),f(x)0时得:xa或xa,f(x)0时,得ax.10解(1)函数f(x)的定义域为R.f(x)3x2123(x2)(x2)令f(x)0,得x2或x2.当x变化时,f(x),f(x)的变化情况如下表:x(,2)2(2,2)2(2,

    7、)f(x)00f(x)极大值极小值从表中可以看出,当x2时,函数f(x)有极大值,且f(2)(2)312(2)16;当x2时,函数f(x)有极小值,且f(2)2312216.(2)f(x)(1x)ex.令f(x)0,解得x1.当x变化时,f(x),f(x)的变化情况如下表:x(,1)1(1,)f(x)0f(x)极大值函数f(x)在x1处取得极大值f(1),且f(1).11解(1)f(x)3x29x6.因为x(,),f(x)m,即3x29x(6m)0恒成立,所以8112(6m)0,解得m,即m的最大值为.(2)因为当x0;当1x2时,f(x)2时,f(x)0.所以当x1时,f(x)取极大值f(1)a;当x2时,f(x)取极小值f(2)2a,故当f(2)0或f(1)0时,f(x)0仅有一个实根解得a.12(1)解当a1,b2时,f(x)(x1)2(x2),因为f(x)(x1)(3x5),故f(2)1,又f(2)0,所以f(x)在点(2,0)处的切线方程为yx2.(2)证明因为f(x)3(xa)(x),由于ab,故a,所以f(x)的两个极值点为xa,x.不妨设x1a,x2,因为x3x1,x3x2,且x3是f(x)的零点,故x3b.又因为a2(b),x4(a),此时a,b依次成等差数列,所以存在实数x4满足题意,且x4.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:《创新设计-课堂讲义》2016-2017学年高中数学(人教版选修1-1)课时作业:第3章 导数及其应用3.3.2 WORD版含答案.docx
    链接地址:https://www.ketangku.com/wenku/file-787712.html
    相关资源 更多
  • 专题10.4 二项式定理(原卷版).docx专题10.4 二项式定理(原卷版).docx
  • 专题10.3 两个计数原理、排列与组合(解析版).docx专题10.3 两个计数原理、排列与组合(解析版).docx
  • 专题10.3二项式定理及其应用(原卷版).docx专题10.3二项式定理及其应用(原卷版).docx
  • 专题10.2 统计案例(解析版).docx专题10.2 统计案例(解析版).docx
  • 专题10.2 统计案例(原卷版).docx专题10.2 统计案例(原卷版).docx
  • 专题10.2排列组合问题(解析版).docx专题10.2排列组合问题(解析版).docx
  • 专题10.10 统计与概率(2021-2023年)真题训练(解析版).docx专题10.10 统计与概率(2021-2023年)真题训练(解析版).docx
  • 专题10.1 分类加法计数原理与分步乘法计数原理(原卷版).docx专题10.1 分类加法计数原理与分步乘法计数原理(原卷版).docx
  • 专题10.1 分类加法计数原理与分步乘法计数原理(解析版).docx专题10.1 分类加法计数原理与分步乘法计数原理(解析版).docx
  • 专题10-定语从句-冲刺2023年高考每天100道语法小题限时狂练.docx专题10-定语从句-冲刺2023年高考每天100道语法小题限时狂练.docx
  • 专题10-书面表达常用词汇和高级词汇 -2023年高考英语真题分项功能词汇专项突破.docx专题10-书面表达常用词汇和高级词汇 -2023年高考英语真题分项功能词汇专项突破.docx
  • 专题10-19天晨读 晚练四步轻松掌握高考英语核心词汇词形转换.docx专题10-19天晨读 晚练四步轻松掌握高考英语核心词汇词形转换.docx
  • 专题10-12 新民主主义革命时期(好题过关)(原卷版).docx专题10-12 新民主主义革命时期(好题过关)(原卷版).docx
  • 专题10--《2021届高考英语阅读理解完型填空600高频单词20练(基础练 拔高练)》(10).docx专题10--《2021届高考英语阅读理解完型填空600高频单词20练(基础练 拔高练)》(10).docx
  • 专题10 阅读还原(杭州专用)-2023年中考英语逆袭冲刺(三年真题热门考点提炼 名校最新模拟速递)专训(浙江省专用).docx专题10 阅读还原(杭州专用)-2023年中考英语逆袭冲刺(三年真题热门考点提炼 名校最新模拟速递)专训(浙江省专用).docx
  • 专题10 阅读表达-8年(2014-2021)苏州中考英语真题分析.docx专题10 阅读表达-8年(2014-2021)苏州中考英语真题分析.docx
  • 专题10 阅读理解应用文(解析版).docx专题10 阅读理解应用文(解析版).docx
  • 专题10 阅读理解应用文(原卷版).docx专题10 阅读理解应用文(原卷版).docx
  • 专题10 阅读理解之说明文(名校最新期末真题)-2022-2023学年七年级英语下学期期末复习查缺补漏冲刺满分(牛津译林版).docx专题10 阅读理解之说明文(名校最新期末真题)-2022-2023学年七年级英语下学期期末复习查缺补漏冲刺满分(牛津译林版).docx
  • 专题10 阅读理解之说明文-2021年高考英语题型大冲关(上海专用).docx专题10 阅读理解之说明文-2021年高考英语题型大冲关(上海专用).docx
  • 专题10 阅读理解之应用文(名校最新期末真题)-2022-2023学年八年级英语下学期期末考点大串讲(牛津译林版).docx专题10 阅读理解之应用文(名校最新期末真题)-2022-2023学年八年级英语下学期期末考点大串讲(牛津译林版).docx
  • 专题10 阅读理解之应用文-2024年高考英语二轮热点题型归纳与变式演练(新高考通用)(解析版).docx专题10 阅读理解之应用文-2024年高考英语二轮热点题型归纳与变式演练(新高考通用)(解析版).docx
  • 专题10 阅读理解20篇(名校最新期末真题)-2021-2022学年八年级英语下学期期末复习查缺补漏冲刺满分(人教版).docx专题10 阅读理解20篇(名校最新期末真题)-2021-2022学年八年级英语下学期期末复习查缺补漏冲刺满分(人教版).docx
  • 专题10 阅读填表(5空)-冲刺2022年中考英语必考题型终极押题(江苏通用).docx专题10 阅读填表(5空)-冲刺2022年中考英语必考题型终极押题(江苏通用).docx
  • 专题10 阅读回答问题10篇-2023届九年级英语名校真题分类汇编(江苏专用).docx专题10 阅读回答问题10篇-2023届九年级英语名校真题分类汇编(江苏专用).docx
  • 专题10 阅读回答问题-备战2022中考英语全国名校最新模拟试题分类汇编.docx专题10 阅读回答问题-备战2022中考英语全国名校最新模拟试题分类汇编.docx
  • 专题10 阅读回答问题-备战2022中考英语全国名校最新模拟试题分类汇编(1).docx专题10 阅读回答问题-备战2022中考英语全国名校最新模拟试题分类汇编(1).docx
  • 专题10 问鼎中考宾语从句在手-【口袋书】2022年中考英语背诵手册(牛津译林版).docx专题10 问鼎中考宾语从句在手-【口袋书】2022年中考英语背诵手册(牛津译林版).docx
  • 专题10 透过语境巧记高考英语3500词.docx专题10 透过语境巧记高考英语3500词.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1