2022届高考数学一轮复习 第3章 3.3 利用导数研究函数的极值、最值核心考点 精准研析训练(含解析)新人教B版 (2).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届高考数学一轮复习 第3章 3.3 利用导数研究函数的极值、最值核心考点 精准研析训练含解析新人教B版 2 2022 高考 数学 一轮 复习 利用 导数 研究 函数 极值 核心 考点 精准
- 资源描述:
-
1、第3章核心考点精准研析考点一用导数解决函数的极值问题命题精解读考什么:(1)考查求值、解方程、解不等式等问题.(2)考查数学运算、直观想象、逻辑推理的核心素养及数形结合、分类与整合等数学思想.怎么考:与函数图象、方程、不等式、函数单调性等知识结合考查求函数极值、知函数极值求参数等问题.新趋势:函数极值、导数的几何意义及函数图象等知识交汇考查为主学霸好方法1.求函数f(x)极值的一般解题步骤 (1)确定函数的定义域;(2)求导数f (x);(3)解方程f (x)=0,求出函数定义域内的所有根;(4)列表检验f (x)在f (x)=0的根x0左右两侧值的符号.2.已知函数极值点或极值求参数的两个要
2、领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解.(2)验证:因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性. 由图象判断函数的极值【典例】(2020咸阳模拟)已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则=_.【解析】f(x)=3ax2+2bx+c;根据图象知,x=-1,2是f(x)的两个极值点;所以x=-1,2是方程3ax2+2bx+c=0的两实数根;根据根与系数的关系得,所以2b=-3a,c=-6a,所以=1.答案:1由函数f(x)的图象确定极值点的主要依据是什么?提示:局部最高(低)点的横坐标是极大
3、(小)值点.求已知函数的极值【典例】已知函数f(x)=x-1+(aR,e为自然对数的底数).世纪金榜导学号(1)若曲线y=f(x)在点(1, f(1)处的切线平行于x轴,求a的值.(2)求函数f(x)的极值.【解析】(1)由f(x)=x-1+,得f (x)=1-.又曲线y=f(x)在点(1, f(1)处的切线平行于x轴, 所以f (1)=0,即1-=0,解得a=e.(2)f (x)=1-, 当a0时,f (x)0,f(x)为(-,+)上的增函数,所以函数f(x)无极值.当a0时,令f (x)=0,得ex=a,即x=ln a, 当x(-,ln a)时, f (x)0, 所以f(x)在(-,ln
4、a)上单调递减, 在(ln a,+)上单调递增,故f(x)在x=ln a处取得极小值且极小值为f(ln a)=ln a,无极大值.综上,当a0时,函数f(x)无极值;当a0时,f(x)在ln a处得极小值ln a,无极大值.若函数f(x)在区间a,b内有极值,则极值点有可能是a或b吗?f(x)在(a,b)内可以是单调函数吗?提示:若函数y=f(x)在区间a,b内有极值,那么y=f(x)在(a,b)内绝不是单调函数,即在某区间上单调函数没有极值,且极值点一定不是a和b.已知函数极值情况求参数值(范围)【典例】设aR,若函数y=x+aln x在区间上有极值点,则a的取值范围为世纪金榜导学号()A.
5、B.C.(e,+)D.(-,-e)【解析】选B.因为函数y=f(x)=x+aln x在区间上有极值点,所以y在区间上有零点.f(x)=1+=(x0).所以ff(e)0,所以(ea+1)0,解得-ea-,所以a的取值范围为.已知函数极值求参数,常转化为什么问题?提示:常转化为方程的根和函数零点的问题.1.设函数f(x)在R上可导,其导函数为f(x),且函数y=(1-x)f(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(-2)D.函数f(x)有极大值f(-
6、2)和极小值f(2)【解析】选D.由题图可知,当x3,此时f(x)0;当-2x1时,01 -x3,此时f(x)0;当1x2时,-11-x0,此时f(x)2时,1-x0,由此可以得到函数f(x)在x=-2处取得极大值,在x=2处取得极小值.2.设函数f(x)=ln x+ax2-x,若x=1是函数f(x)的极大值点,则函数f(x)的极小值为_.【解析】函数f(x)=ln x+ax2-x,函数定义域为(0,+),f(x)=+2ax-.若x=1是函数f(x)的极大值点,则f(1)=0,解得a=;所以f(x)=ln x+x2-x,f(x)=+x-=;当f(x)0时,0x2;函数在(0,1)和(2,+)上
7、单调递增;当f(x)0时,1x2,函数在(1,2)上单调递减;所以函数在x=1时有极大值;函数在x=2时有极小值为f(2)=ln 2-2.答案:ln 2-23.(2019荆门模拟)已知函数f(x)=x2+2x-2xex.求函数f(x)的极值.【解析】因为函数f(x)=x2+2x-2xex(xR),所以f(x)=2x+2-2ex-2xex=(2x+2)(1-ex),由f(x)=0,得x=-1或x=0,列表讨论,得:x(-,-1)-1(-1,0)0(0,+)f(x)-0+0-f(x)极小值极大值所以当x=-1时,f(x)极小值=f(-1)=1-2+2=-1,当x=0时,f(x)极大值=f(0)=0
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-245921.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
