2022年新高考数学 小题狂练(30)(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年新高考数学 小题狂练30含解析 2022 新高 数学 小题狂练 30 解析
- 资源描述:
-
1、小题狂练(30)一、单项选择题:本题共8小题,每小题5分,共40分1. 已知集合=,=,则等于( )A. (1,2)B. C. D. 【答案】D【解析】分析】分析两个集合中元素的类型可得.【详解】因为集合是数集,集合是点集,两个集合没有公共元素,所以两个集合的交集为空集.故选.【点睛】本题考查了集合的交集运算,属于基础题.2. 设,则在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】分析】先由已知条件求得,再确定在复平面内对应的点位于的象限即可.【详解】解:由题意知,即,故在复平面内对应的点位于第四象限,故选D.【点睛】本题考查了复数的运算及
2、复数在复平面内对应的点的位置,属基础题.3. 己知向量,.若,则m的值为( )A. B. 4C. -D. -4【答案】B【解析】【分析】根据两个向量垂直的坐标表示列方程,解方程求得的值.【详解】依题意,由于,所以,解得.故选B.【点睛】本小题主要考查两个向量垂直的坐标表示,考查向量减法的坐标运算,属于基础题.4. 的展开式中,项的系数为( )A. 280B. 280C. 560D. 560【答案】C【解析】【分析】在二项展开式的通项公式中,令x的幂指数等于4,求出r的值,即可求得结果【详解】在的展开式中,通项公式为Tr+1(1)r,令144,求得r3,可得x4项的系数为560,故选C【点睛】本
3、题主要考查二项式定理的应用,二项展开式的通项公式及系数的求解,属于基础题5. 把直线绕原点逆时针转动,使它与圆相切,则直线转动的最小正角度()A. B. C. D. 【答案】B【解析】【分析】根据直线过原点且与圆相切,求出直线的斜率,再数形结合计算最小旋转角【详解】解析:由题意,设切线为,.或.时转动最小最小正角为.故选B.【点睛】本题考查直线与圆的位置关系,属于基础题6. 如果甲是乙的充要条件,丙是乙的充分条件但不是乙的必要条件,那么( )A. 丙是甲的充分条件,但不是甲的必要条件B. 丙是甲的必要条件,但不是甲的充分条件C. 丙是甲的充要条件D. 丙既不是甲的充分条件,也不是甲的必要条件【
4、答案】A【解析】【分析】根据充分条件、必要条件的定义来对各选项的正误进行判断.【详解】因为甲是乙的充要条件,所以乙甲;又因为丙是乙的充分条件,但不是乙的必要条件,所以丙乙,但乙丙综上,丙甲,但甲丙,即丙是甲的充分条件,但不是甲的必要条件故选A.【点睛】本题考查充分条件、必要条件的定义,考查逻辑推理能力,属于基础题.7. 菱形的边长为2,现将沿对角线折起使,求此时所成空间四面体体积的最大值()A. B. C. 1D. 【答案】A【解析】【分析】在等腰三角形中,取的中点为,则有,通过,根据面面垂直的性质定理,可以证明出,设,在中,由题意可知:,这样可以求出空间四面体体积的表达式,通过换元法,利用导
5、数,可以求出空间四面体的体积的最大值.【详解】设的中点为,因为,所以, 又因为,所以,设,在中,由题意可知:,设,则,且,当时,当时,当时,取得最大值,四面体体积的最大值为故选【点睛】本题考查了空间四面体体积最大值问题,正确求出体积的表达式,利用同角的三角函数关系、二倍角的正弦公式、换元法、导数法是解题的关键.8. 己知函数有两个零点,则有( )A. B. C. D. 【答案】B【解析】【分析】将函数有两个零点,,转化为: 函数,则与的图象有两个交点,作出图象,根据图像可得: ,由此去绝对值,利用可得.【详解】解:因为函数有两个零点,故方程有两个解,.设函数,函数,则与的图象有两个交点,如图所
6、示:由图象知,所以,所以,因为且,所以,得,即, 整理得,.故选B.【点睛】本题考查了函数的零点,数形结合思想,指数函数的单调性与对数的运算,属于中档题.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求. 全部选对的得5分,部分选对的得3分,有选错的得0分.9.对于不同直线,和不同平面,有如下四个命题,其中正确的是( )A. 若,则B. 若,则C. 若,则D. 若,则【答案】BC【解析】【分析】根据线面的平行、垂直的判定定理和性质定理,对选项进行逐一的判断,即可得出答案.【详解】选项A. 若,则与可能相交可能平行,故A不正确.选项B. 若,则,又,所
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
