2021秋八年级数学上册 第十三章 轴对称13.4 课题学习 最短路径问题教学设计(新版)新人教版.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021秋八年级数学上册 第十三章 轴对称13.4 课题学习 最短路径问题教学设计新版新人教版 2021 八年 级数 上册 第十三 轴对称 13.4 课题 学习 路径 问题 教学 设计 新版 新人
- 资源描述:
-
1、课题学习最短路径问题一、内容和内容解析1内容利用轴对称研究某些最短路径问题.2内容解析最短路径问题在现实生活中经常遇到,初中阶段主要以“两点之间,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”为基础知识,有时还要借助轴对称、平移、旋转等变换进行研究.本节课以数学史中的一个经典问题“将军饮马问题”为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题基于以上分析,确定本节课的教学重点是:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题,培养学生解决实际问题的能力.二、目标和目标
2、解析1.教学目标能利用轴对称解决简单的最短路径问题,体会图形的变换在解决最值问题中的作用,感悟转化思想,进一步获得数学活动的经验,增强应用意识2. 教学目标解析学生能将实际问题中的“地点”“河”抽象为数学中的“点”“线”,把实际问题抽象为数学问题;能利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题;能通过逻辑推理证明所求距离最短;在探索最短路径的过程中,体会轴对称的“桥梁”作用,感悟转化思想三、教学问题诊断分析最短路径问题从本质上说是极值问题,作为八年级的学生,在此之前很少接触,解决这方面问题的经验尚显不足,特别是面对具有实际背景的极值问题,更会感到陌生,无从下手.对于直线异侧的两点
3、,怎样在直线上找到一点,使这一点到这两点的距离之和最小,学生很容易想到连接这两点,所连线段与直线的交点就是所求的点.但对于直线同侧的两点,如何在直线上找到一点,使这一点到这两点的距离之和最小,一些学生会感到茫然,找不到解决问题的思路.在证明“最短”时,需要在直线上任取一点(与所求作的点不重合),证明所连线段和大于所求作的线段和,学生想不到,不会用.教学时,教师可从“直线异侧的两点”过渡到“直线同侧的两点”,为学生搭建“脚手架”.在证明“最短”时,教师可告诉学生,证明“最大”“最小”这类问题,常常要另选一个量,通过与求证的那个“最大”“最小”的量进行比较来证明.由于另取的点具有任意性,所以结论对
4、于直线上的每一点(C点除外)都成立本节课的教学难点是:如何利用轴对称将最短路径问题转化为线段和最小问题四、教学过程设计1创设问题情境问题1 如图,从A地到B地有三条路可供选择,你会选择哪条路距离最短?说说你的理由.师生活动:学生回答问题,说出理由:两点之间,线段最短.【设计意图】让学生回顾“两点之间,线段最短”,为引入新课作准备问题2:如图,要在燃气管道l上修建一个泵站,分别向A、B两村供气,泵站修在管道的什么地方,可使所用的输气管线最短?师生活动:学生回答,连接AB,线段AB与l的交点即为泵站修建的位置【设计意图】让学生进一步感受“两点之间,线段最短”,为把“同侧的两点”转化为“异侧的两点”
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-510688.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
