2022-2023学年人教版九年级数学上册第二十三章旋转综合训练练习题.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 人教版 九年级 数学 上册 第二十三 旋转 综合 训练 练习题
- 资源描述:
-
1、人教版九年级数学上册第二十三章旋转综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列几何图形中,是轴对称图形但不是中心对称图形的是()A梯形B等边三角形C平行四边形D矩形2、下列图形中,既是轴对
2、称图形又是中心对称图形的是()ABCD3、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接则在点M运动过程中,线段长度的最小值是()AB1C2D4、如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A平行四边形正方形平行四边形矩形B平行四边形菱形平行四边形矩形C平行四边形正方形菱形矩形D平行四边形菱形正方形矩形5、在下列图形中,既是轴对称图形,又是中心对称图形的是()A等边三角形B直角三角形C正五边形D矩形6、以下是我国部分博物馆标志的图案,其中既是轴对称
3、图形又是中心对称图形的是()ABCD7、已知点与点关于原点对称,则点的坐标()ABCD8、在下列面点烘焙模具中,其图案是中心对称图形的是()ABCD9、把四张扑克牌所摆放的顺序与位置如下,小杨同学选取其中一张扑克牌把他颠倒后在放回原来的位置,那么扑克牌的摆放顺序与位置都没变化,那么小杨同学所选的扑克牌是()ABCD10、如图,RtABC中,C=90,A=30,AB=20,点P是AC边上的一个动点,将线段BP绕点B顺时针旋转60得到线段BQ,连接CQ则在点P运动过程中,线段CQ的最小值为()A4B5C10D5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,把ABC绕
4、着点A逆时针旋转90得到ADE,连接BE,CD,M是BE的中点,若AM=,则CD的长为_2、若点与关于原点对称,则=_3、点A(1,-5)关于原点的对称点为点B,则点B的坐标为_4、镇江市旅游局为了亮化某景点,在两条笔直且互相平行的景观道MN、QP上分别放置A、B两盏激光灯,如图所示A灯发出的光束自AM逆时针旋转至AN便立即回转;B灯发出的光束自BP逆时针旋转至BQ便立即回转,两灯不间断照射,A灯每秒转动12,B灯每秒转动4B灯先转动12秒,A灯才开始转动当B灯光束第一次到达BQ之前,两灯的光束互相平行时A灯旋转的时间是 5、如图,在中,将绕点逆时针旋转得到,连接,则的长为_.三、解答题(5小
5、题,每小题10分,共计50分)1、如图,在正方形网格中,的顶点在格点上,请仅用无刻度直尺完成以下作图(保留作图痕迹)(1)在图1中,作关于点对称的;(2)在图2中,作绕点顺时针旋转一定角度后,顶点仍在格点上的2、如图1,D为等边ABC内一点,将线段AD绕点A逆时针旋转60得到AE,连接CE,BD的延长线与AC交于点G,与CE交于点F(1)求证:BDCE;(2)如图2,连接FA,小颖对该图形进行探究,得出结论:BFCAFBAFE小颖的结论是否正确?若正确,请给出证明;若不正确,请说明理由3、如图,先将绕点顺时针旋转得到,再将线段绕点顺时针旋转得到,连接、,且(1)若求证:、三点共线;求的长;(2
6、)若,点在边上,求线段的最小值4、如图,P是等边内的一点,且,将绕点B逆时针旋转,得到(1)旋转角为_度;(2)求点P与点Q之间的距离;(3)求的度数;(4)求的面积5、如图,点M是ABC的边BA上的动点,BC6,连接MC,并将线段MC绕点M逆时针旋转90得到线段MN(1)作MHBC,垂足H在线段BC上,当CMHB时,判断点N是否在直线AB上,并说明理由;(2)若ABC30,NCAB,求以MC、MN为邻边的正方形的面积S-参考答案-一、单选题1、B【解析】【分析】根据轴对称图形和中心对称图形的定义以及性质对各项进行分析即可【详解】A、梯形不是轴对称图形,也不是中心对称图形,故本选项说法错误;B
7、、等边三角形是轴对称图形,但不是中心对称图形,故本选项说法正确;C、平行四边形不是轴对称图形,是中心对称图形,故本选项说法错误;D、矩形是轴对称图形,也是中心对称图形,故本选项说法错误故选:B【考点】本题考查了轴对称图形和中心对称图形的判断,掌握轴对称图形和中心对称图形的定义以及性质是解题的关键2、D【解析】【分析】根据轴对称图形与中心对称图形的概念进行判断即可【详解】解:A、是中心对称图形,但不是轴对称图形,不符合题意;B、是轴对称图像,但不是中心对称图形,不符合题意;C、是轴对称图形,但不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,符合题意;故选:D【考点】本题考查的是
8、中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握以上知识是解题的关键3、A【解析】【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出HBN=MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明MBGNBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MGCH时最短,再根据BCH=30求解即可【详解】解:如图,取BC的中点G,连接MG,旋转角为60,MBH+HBN=60,又MBH+MBC=ABC=60,HBN=GBM,CH是等边ABC的对称轴,HB
9、=AB,HB=BG,又MB旋转到BN,BM=BN,在MBG和NBH中,MBGNBH(SAS),MG=NH,根据垂线段最短,MGCH时,MG最短,即HN最短,此时BCH=60=30,CG=AB=5=2.5,MG=CG=,HN=,故选A【考点】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点4、B【解析】【分析】根据对称中心的定义,根据矩形的性质,可得四边形AECF形状的变化情况【详解】解:观察图形可知,四边形AECF形状的变化依次为平行四边形菱形平行四边形矩形故选:B【考点】考查了中心对称,矩形的性质,平行四边
10、形的判定与性质,菱形的性质,根据EF与AC的位置关系即可求解5、D【解析】【分析】根据轴对称图形和中心对称图形的概念逐一判断可得【详解】解:A等边三角形是轴对称图形,不是中心对称图形,不符合题意;B直角三角形既不是轴对称图形,也不是中心对称图形,不符合题意;C正五边形是轴对称图形,不是中心对称图形,不符合题意;D矩形既是轴对称图形,又是中心对称图形,符合题意;故选:D【考点】本题主要考查中心对称图形和轴对称图形,解题的关键是掌握把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做
11、轴对称图形6、A【解析】【分析】根据中心对称图形和轴对称图形的概念逐项分析即可,轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形中心对称图形:在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形【详解】A.既是轴对称图形又是中心对称图形,故该选项符合题意;B.是轴对称图形,但不是中心对称图形,故该选项不符合题意;C.不是轴对称图形,但是中心对称图形,故该选项不符合题意;D.既不是轴对称图形也不是中心对称图形,故该选项不符合题意故选A【考点】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部
12、分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握中心对称图形与轴对称图形的概念是解题的关键7、B【解析】【分析】根据关于原点对称点的坐标变化特征直接判断即可【详解】解:点与点关于原点对称,则点的坐标为,故选:B【考点】本题考查了关于原点对称点的坐标,解题关键是明确关于原点对称的两个点横纵坐标都互为相反数8、D【解析】【分析】根据中心对称图形的性质得出图形旋转180,与原图形能够完全重合的图形是中心对称图形,分别判断得出即可【详解】解:A.不是中心对称图形,不符合题意;B.不是中心对称图形,不符合题意;C.不是中心对称图形,不符合题意;D.是中心对称图形,符合题意;故
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
