分享
分享赚钱 收藏 举报 版权申诉 / 22

类型2022-2023学年人教版九年级数学上册第二十五章概率初步定向测试试卷.docx

  • 上传人:a****
  • 文档编号:635690
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:22
  • 大小:281.29KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 人教版 九年级 数学 上册 第二 十五 概率 初步 定向 测试 试卷
    资源描述:

    1、人教版九年级数学上册第二十五章概率初步定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个布袋里装有2个红球,3个黑球,4个白球,它们除颜色外都相同,从中任意摸出1个球,则下事件中,发生的可能性最

    2、大的是()A摸出的是白球B摸出的是黑球C摸出的是红球D摸出的是绿球2、下列命题是真命题的是()A相等的两个角是对顶角B相等的圆周角所对的弧相等C若,则D在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是3、在三行三列的方格棋盘上沿骰子的某条棱翻动骰子(相对面上分别标有1点和6点,2点和5点,3点和4点)开始时,骰子如图(1)所示摆放,朝上的点数是2,最后翻动到如图(2)所示位置现要求翻动次数最少,则最后骰子朝上的点数为2的概率为()ABCD4、若气象部门预报明天下雨的概率是70%,下列说法正确的是()A明天下雨的可能性比较大B明天一定不

    3、会下雨C明天一定会下雨D明天下雨的可能性比较小5、某校团支部组织部分共青团员开展学雷锋志愿者服务活动,每个志愿者都可以从以下三个项目中任选一项参加:敬老院做义工;文化广场地面保洁;路口文明岗值勤则小明和小慧选择参加同一项目的概率是()ABCD6、投掷硬币m次,正面向上n次,其频率p=,则下列说法正确的是()Ap一定等于Bp一定不等于C多投一次,p更接近D投掷次数逐步增加,p稳定在附近7、下列说法错误的是()A袋中装有一个红球和两个白球,它们除颜色外都相同,从中随机摸出一个球,记下颜色后放回,充分摇动后,再从中随机摸出一个球,两次摸到不同颜色的球的概率是B甲、乙、丙三人玩“石头、剪刀、布”的游戏

    4、,游戏规则是如果甲、乙两人的手势相同,那么丙获胜,如果甲、乙两人的手势不同,按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定甲、乙的获胜者这个游戏规则对甲、乙、丙三人是公平的C连续抛两枚质地均匀的硬币,“两枚正面朝上”“两枚反面朝上”和“一枚正面朝上,一枚反面朝上”,这三种结果发生的概率是相同的D一个小组的八名同学通过依次抽签(卡片外观一样,抽到不放回)决定一名同学获得元旦奖品,先抽和后抽的同学获得奖品的概率是相同的,抽签的先后不影响公平8、下列事件中,是必然事件的是()A抛掷一个骰子,出现8点朝上B三角形的内角和是C汽车经过一个有红绿灯的路口时,前方恰好是绿灯D明天考试,小明会考满分9、学校

    5、组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是()ABCD10、下列说法正确的是()A367人中至少有2人生日相同B任意掷一枚均匀的骰子,掷出的点数是偶数的概率是C天气预报说明天的降水概率为90%,则明天一定会下雨D某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里装有几十个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程整理数据后,制

    6、作了“摸出黑球的频率”与“摸球的总次数”的关系图象如图所示,经分析可以推断盒子里个数比较多的是_(填“黑球”或“白球”)2、从2018年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6个科目中,自主选择3个科目参加等级考试.学生已选物理,还想从思想政治、历史、地理3个文科科目中选1科,再从化学、生物2个理科科目中选1科.若他选思想政治、历史、地理的可能性相等,选化学、生物的可能性相等,则选修地理和生物的概率为_.3、某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示

    7、:移植总数(n)200500800200012000成活数(m)187446730179010836成活的频率0.9350.8920.9130.8950.903根据表中数据,估计这种幼树移植成活率的概率为_(精确到0.1)4、某校举行春季运动会,需要在初一年级选取一名志愿者初一(1)班、初一(2)班、初一(3)班各有2名同学报名参加,现从这6名同学中随机选取一名志愿者,则被选中的这名同学恰好是初一(3)班同学的概率是_5、现有两个不透明的盒子,其中一个装有标号分别为1,2的两张卡片,另一个装有标号分别为1,2,3的三张卡片,卡片除标号外其他均相同,若从两个盒子中各随机抽取一张卡片,则两张卡片标

    8、号恰好相同的概率是_.三、解答题(5小题,每小题10分,共计50分)1、2022北京冬残奥会是历史上第13届冬残奥会,于2022年3月4日至3月13日举行比赛共设6个大项,即残奥高山滑雪、残奥冬季两项、残奥越野滑雪、残奥单板滑雪、残奥冰球、轮椅冰壶小明为了解同学们是否知晓这6大项目,随机对学校的部分同学进行了一次问卷调查,问卷调查的结果分为“非常了解”“比较了解”“基本了解”“不太了解”四个类别,根据调查结果,绘制出如图所示的条形统计图和扇形统计图请根据图表中的信息回答下列问题:(1)求本次调查的样本容量(2)求图中a的值(3)求图“基本了解”类别所对应的圆心角大小(4)若某同学对项目了解类别

    9、为“非常了解”或者“比较了解”的话,则可称为“奥知达人”,现从该校随机抽查1名学生,求该学生是“奥知达人”的概率2、为了迎接建党100周年,学校举办了“感党恩跟党走”主题社团活动,小颖喜欢的社团有写作社团、书画社团、演讲社团、舞蹈社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片正面,然后将这四张卡片背面朝上洗匀后放在桌面上(1)小颖从中随机抽取一张卡片是舞蹈社团D的概率是 ;(2)小颖先从中随机抽取一张卡片,记录下卡片上的字母不放回,再从剩下的卡片中随机抽取一张卡片,记录下卡片上的字母,请用列表法或画树状图法求出小颖抽取的两张卡片中有一张是演

    10、讲社团C的概率3、某医院计划选派护士支援某地的防疫工作,甲、乙、丙、丁4名护士积极报名参加,其中甲是共青团员,其余3人均是共产党员医院决定用随机抽取的方式确定人选(1)“随机抽取1人,甲恰好被抽中”是_事件;A不可能B必然C随机(2)若需从这4名护士中随机抽取2人,请用画树状图法或列表法求出被抽到的两名护士都是共产党员的概率4、 “校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图根据图中信息回答下列问题:(1)接受问卷调查的学生共有 人,条形统计图中的值为 ;(2)扇形统计图中“了解

    11、很少”部分所对应扇形的圆心角的度数为 ;(3)若该中学共有学生1500人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为 人;(4)若从校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率5、一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,

    12、求两次摸出都是红球的概率;-参考答案-一、单选题1、A【解析】【分析】个数最多的就是可能性最大的【详解】解:因为白球最多,所以被摸到的可能性最大故选A【考点】本题主要考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等2、D【解析】【分析】分别根据对顶角的定义,圆周角定理,不等式的基本性质及概率公式进行判断即可得到答案【详解】有公共顶点且两条边互为反向延长线的两个角是对顶角,故A选项错误,不符合题意;在同圆或等圆中,相等的圆周角所对的弧相等,故B选项错误,不符合题意;若,则,故C选项错误,不符合题意;在一个不透明的箱

    13、子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是,故D选项正确,符合题意;故选:D【考点】本题考查了命题的真假,涉及对顶角的定义,圆周角定理,不等式的基本性质及概率公式,熟练掌握知识点是解题的关键3、C【解析】【分析】根据题意模拟骰子的翻动过程,可以得到最后骰子朝上的点数所有的可能性和点数为2的基本事件的个数,代入概率公式即可【详解】设三行三列的方格棋盘的格子坐标为,其中开始时骰子所处的位置为,则图题(2)所示的位置为,则从到且次数翻动最少,共有6种走法,最后骰子朝上的点数分别为2,5,1,5,3,2,故最后骰子朝上的点数为2的概率为,故选C【考点】

    14、本题主要考查概率,根据已知条件计算出骰子朝上的点数所有的基本事件和满足条件的基本事件个数是关键4、A【解析】【分析】根据“概率”的意义进行判断即可【详解】解:A 明天下雨的概率是70%,即明天下雨的可能性是70%,也就是说明天下雨的可能性比较大,因此选项A符合题意,B. 明天下雨的可能性比较大,与明天一定不会下雨是矛盾的,因此选项B不符合题意;C 明天下雨的可能性是70%,并不代表明天一定会下雨,因此选项C不符合题意;D 明天下雨的可能性是70%,也就是说明天下雨的可能性比较大,因此选项D不符合题意,故选:A【考点】本题考查了概率与可能性的关系,正确理解概率的意义是解题的关键5、A【解析】【分

    15、析】先根据题意画出树状图,然后再根据概率的计算公式进行计算即可【详解】解:根据题意画出树状图,如图所示:共有9种等可能的情况,其中小明和小慧选择参加同一项目的有3种情况,小明和小慧选择参加同一项目的概率为,故A正确故选:A【考点】本题主要考查了概率公式、画树状图或列表格求概率,根据题意画出树状图或列出表格,是解题的关键6、D【解析】【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果【详解】投掷硬币m次,正面向上n次,投掷次数逐步增加,p稳定在附近故选:D【考点】考查利用频率估计概率,大量反复试验下频率稳定值即概率注意随机事件可能

    16、发生,也可能不发生7、C【解析】【分析】利用列表法或树状图法分别计算出所求的概率,即可得答案【详解】A.两次摸球所有可能出现的结果,用表列举如下:有9种等可能的结果,两次摸球颜色不同有4种,两次摸球颜色不同的概率为故该选项正确;B.甲获胜的概率为,乙获胜的概率为,丙获胜的概率也为,所以这个游戏规则对三人是公平的故该选项正确;C.设正面朝上为A,反面朝上为B,画树状图如下:P(两枚正面朝上)(两枚反面朝上),P(枚正面朝上,一枚反面朝上)故该选项错误;D.等可能事件,每人抽签获奖的概率均为故该选项正确,故选C【考点】本题考查了概率的意义、游戏的公平性;概率=所求情况数与总情况数之比;熟练掌握概率

    17、公式是解题关键8、B【解析】【分析】根据随机事件的相关概念可进行排除选项【详解】解:A、抛掷一个骰子,出现8点朝上,属于不可能事件,故不符合题意;B、三角形内角和是180,是必然事件,故符合题意;C、汽车经过一个有红绿灯的路口时,前方恰好是绿灯,属于随机事件,故不符合题意;D、明天考试,小明会考满分,是随机事件,故不符合题意;故选B【考点】本题主要考查随机事件,熟练掌握随机事件的相关概念是解题的关键9、C【解析】【详解】用A,B,C分别表示给九年级的三辆车,画树状图得:共有9种等可能的结果,小明与小红同车的有3种情况,小明与小红同车的概率是:点睛:此题主要考查了用列表法或树状图求概率,解题关键

    18、是用字母或甲乙丙分别表示给九年级的三辆车,然后根据题意画树状图,再由树状图求得所有等可能的结果与小明与小红同车的情况,然后利用概率公式求解即可求得答案10、A【解析】【详解】分析:利用概率的意义和必然事件的概念的概念进行分析详解:A、367人中至少有2人生日相同,正确;B、任意掷一枚均匀的骰子,掷出的点数是偶数的概率是,错误;C、天气预报说明天的降水概率为90%,则明天不一定会下雨,错误;D、某种彩票中奖的概率是1%,则买100张彩票不一定有1张中奖,错误;故选A点睛:此题主要考查了概率的意义,解决的关键是理解概率的意义以及必然事件的概念二、填空题1、白球【解析】【分析】利用频率估计概率的知识

    19、,确定摸出黑球的概率,由此得到答案【详解】解:由图可知:摸出黑球的频率是0.2,根据频率估计概率的知识可得,摸一次摸到黑球的概率为0.2,可以推断盒子里个数比较多的是白球,故答案为:白球【考点】此题考查利用频率估计概率,正确理解图象的意义是解题的关键2、【解析】【详解】【分析】列表格得出所有等可能的情况,然后再找出符合题意的情况,根据概率公式进行计算即可得.【详解】列表格:政治历史地理化学化学,政治化学,历史化学,地理生物生物,政治生物,历史生物,地理从表格中可以看出一共有6种等可能的情况,选择地理和生物的有1种情况,所以选择地理和生物的概率是,故答案为.【考点】本题考查了列表法或树状图法求概

    20、率,用到的知识点为:概率=所求情况数与总情况数之比3、0.9【解析】【分析】由题意根据概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率进行分析即可【详解】解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率,这种幼树移植成活率的概率约为0.9.故答案为:0.9.【考点】本题主要考查利用频率估计概率,大量反复试验下频率稳定值即概率注意掌握频率=所求情况数与总情况数之比4、【解析】【分析】用初一(3)班报名学生人数除以总人数即可得【详解】解:在这6名同学中,有2人来自初一(3)班,被选中的这名同学恰好是初一(3)班

    21、同学的概率是,故答案为:【考点】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比5、【解析】【分析】先用列表法求出所有情况,再根据概率公式求出概率.【详解】情况如表:12311,11,21,322,12,22,3共有6种情况,两张卡片标号恰好相同有2种情况,所以,两张卡片标号恰好相同的概率是P=. 故答案为【考点】本题考核知识点:求概率.解题关键点:列表求出所有情况.三、解答题1、 (1)400(2)120(3)72(4)0.35【解析】【分析】(1)根据类别为“非常了解”的同学有20人,所占百分比为5%,用20除以5%即可求解,(2)根据类别为“比较了解”的频数为即可求得的

    22、值,(3)根据扇形统计图求得类别为“基本了解”所占百分比为乘以360度即可求解,(4)根据类别为“非常了解”与“比较了解”所占百分比之和为35%,利用频率估算概率即可(1)解:类别为“非常了解”的同学有20人,所占百分比为5%,本次调查的样本容量为:(2)类别为“比较了解”的同学占30%,类别为“比较了解”的频数为(3)结合扇形统计图,类别为“基本了解”所占百分比为, 故对应圆心角的大小为(4)类别为“非常了解”与“比较了解”所占百分比之和为35%, 根据样本估计总体的原则,从该校随机抽查1名学生,该学生是“奥知达人”的概率为0.35【考点】本题考查了条形统计图与扇形统计图信息关联,根据样本估

    23、计总体,频率估算概率,掌握以上知识是解题的关键2、(1);(2)见解析,【解析】【分析】(1)共有4种可能出现的结果,其中是舞蹈社团D的有一种,即可求出概率;(2)用列表法列举出所有可能出现的结果,从中找出一张是演讲社团C的结果数,进而求出概率【详解】解:(1)共有4种可能出现的结果,其中是舞蹈社团D的有1种,小颖从中随机抽取一张卡片是舞蹈社团D的概率是,故答案为:;(2)用列表法表示所有可能出现的结果如下:ABCDAABACADBBABCBDCCACBCDDDACBDC共有12种可能出现的结果,每种结果出现的可能性相同,其中有一张是演讲社团C的有6种,小颖抽取的两张卡片中有一张是演讲社团C的

    24、概率是【考点】本题考查了用列表法或树状图法求概率,正确画出树状图或表格是解决本题的关键3、 (1)C(2)【解析】【分析】(1)根据随机事件的定义即可解决问题;(2)从甲、乙、丙、丁名护士积极报名参加,设甲是共青团员用T表示,其余3人均是共产党员用G表示,从这4名护士中随机抽取2人,所有可能出现的结果共有12种,然后利用树状图即可解决问题(1)解:“随机抽取1人,甲恰好被抽中”是随机事件; 故答案为:C;(2)从甲、乙、丙、丁4名护士积极报名参加,设甲是共青团员用T表示,其余3人均是共产党员用G表示从这4名护士中随机抽取2人,所有可能出现的结果共有12种,如图所示:它们出现的可能性相同,所有的

    25、结果中,被抽到的两名护士都是共产党员的(记为事件A)的结果有6 种,则,则被抽到的两名护士都是共产党员的概率为【考点】本题考查的是用列表法或画树状图法求概率,随机事件解决本题的关键是掌握列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件用到的知识点为:概率所求情况数与总情况数之比4、 (1)60,10(2)(3)850(4)【解析】【分析】(1)用“基本了解”的人数除以它所占的百分比得到调查的总人数,再用总人数减去其他了解的人数,求出不了解的人数;(2)用360乘以扇形统计图中“了解很少”部分所占的比例即可;(3)用总人数1500乘以达到“非常了解”和“基本了解”程度

    26、的人数所占的比例即可;(4)画树状图展示所有12种等可能的结果数,找出恰好抽到1个男生和1个女生的结果数,然后利用概率公式求解(1)接受问卷调查的学生共有(人,不了解的人数有:(人,故答案为:60,10;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为;故答案为:;(3)根据题意得:(人,答:估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为850人;故答案为:850;(4)由题意列树状图:由树状图可知,所有等可能的结果有12种,恰好抽到1名男生和1名女生的结果有8种,恰好抽到1名男生和1名女生的概率为【考点】此题考查了列表法或树状图法求概率以及条形统计图

    27、与扇形统计图用到的知识点为:概率=所求情况数与总情况数之比5、 (1)1;(2) 【解析】【分析】(1)设口袋中黄球的个数为x个,根据从中任意摸出一个球是红球的概率为和概率公式列出方程,解方程即可求得答案;(2)根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;【详解】解:(1)设口袋中黄球的个数为个,根据题意得: 解得:=1经检验:=1是原分式方程的解口袋中黄球的个数为1个(2)画树状图得:共有12种等可能的结果,两次摸出都是红球的有2种情况两次摸出都是红球的概率为: .【考点】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年人教版九年级数学上册第二十五章概率初步定向测试试卷.docx
    链接地址:https://www.ketangku.com/wenku/file-635690.html
    相关资源 更多
  • 专题21 尺规作图(精讲精练)(原卷版).docx专题21 尺规作图(精讲精练)(原卷版).docx
  • 专题21 对称、平移、旋转 安徽省2023年中考数学一轮复习专题训练.docx专题21 对称、平移、旋转 安徽省2023年中考数学一轮复习专题训练.docx
  • 专题21 对称、平移、旋转 2023年中考数学一轮复习专题训练(北京专用).docx专题21 对称、平移、旋转 2023年中考数学一轮复习专题训练(北京专用).docx
  • 专题21 圆中的相似问题(解析版).docx专题21 圆中的相似问题(解析版).docx
  • 专题21 圆中的相似问题(原卷版).docx专题21 圆中的相似问题(原卷版).docx
  • 专题21 图形的相似(共29题)(教师版)(01期)-2023年中考数学真题分类训练.docx专题21 图形的相似(共29题)(教师版)(01期)-2023年中考数学真题分类训练.docx
  • 专题21 图形的相似(共29题)(学生版)(01期)-2023年中考数学真题分类训练.docx专题21 图形的相似(共29题)(学生版)(01期)-2023年中考数学真题分类训练.docx
  • 专题21 图形的相似(共20道)(教师版)(02期)-2023年中考数学真题分类训练.docx专题21 图形的相似(共20道)(教师版)(02期)-2023年中考数学真题分类训练.docx
  • 专题21 图形的相似(共20道)(学生版)(02期)-2023年中考数学真题分类训练.docx专题21 图形的相似(共20道)(学生版)(02期)-2023年中考数学真题分类训练.docx
  • 专题21 哲理感悟-备战2023年中考英语阅读理解热点话题分类训练(中考真题 名校最新模拟题).docx专题21 哲理感悟-备战2023年中考英语阅读理解热点话题分类训练(中考真题 名校最新模拟题).docx
  • 专题21 反比例函数-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(解析版).docx专题21 反比例函数-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(解析版).docx
  • 专题21 反比例函数-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(原卷版).docx专题21 反比例函数-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(原卷版).docx
  • 专题21 利用导数解决函数的恒成立问题(原卷版).docx专题21 利用导数解决函数的恒成立问题(原卷版).docx
  • 专题21 初升高检测卷(一)【练习】-2022年初升高英语无忧衔接(通用版).docx专题21 初升高检测卷(一)【练习】-2022年初升高英语无忧衔接(通用版).docx
  • 专题21 元素周期律-【题高分】2022-2023学年高一化学同步教学专题讲义(人教版2019必修第一册).docx专题21 元素周期律-【题高分】2022-2023学年高一化学同步教学专题讲义(人教版2019必修第一册).docx
  • 专题21 信息的传递、能源与可持续发展(原卷版)-备战2023年中考物理精选考点专练(知识清单+基础+拔高) .docx专题21 信息的传递、能源与可持续发展(原卷版)-备战2023年中考物理精选考点专练(知识清单+基础+拔高) .docx
  • 专题21 传统发酵技术及应用(解析版).docx专题21 传统发酵技术及应用(解析版).docx
  • 专题21 传统发酵技术及应用(原卷版).docx专题21 传统发酵技术及应用(原卷版).docx
  • 专题21 从不同的方向看_答案.docx专题21 从不同的方向看_答案.docx
  • 专题21 二次函数与等腰三角形存在问题-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版).docx专题21 二次函数与等腰三角形存在问题-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版).docx
  • 专题21 二次函数与等腰三角形存在问题-2022年中考数学之二次函数重点题型专题(全国通用版)(原卷版).docx专题21 二次函数与等腰三角形存在问题-2022年中考数学之二次函数重点题型专题(全国通用版)(原卷版).docx
  • 专题21 中国共产党领导人民站起来、富起来、强起来(解析版).docx专题21 中国共产党领导人民站起来、富起来、强起来(解析版).docx
  • 专题21 中国共产党领导人民站起来、富起来、强起来(原卷版).docx专题21 中国共产党领导人民站起来、富起来、强起来(原卷版).docx
  • 专题21 与圆相关的压轴题-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版).docx专题21 与圆相关的压轴题-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版).docx
  • 专题21 与二次函数有关的压轴题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版).docx专题21 与二次函数有关的压轴题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版).docx
  • 专题21 不等式选讲(教师版).docx专题21 不等式选讲(教师版).docx
  • 专题21 不等式选讲(学生版).docx专题21 不等式选讲(学生版).docx
  • 专题21 一线三等角模型证全等(解析版).docx专题21 一线三等角模型证全等(解析版).docx
  • 专题21 一次函数(题型归纳)(解析版).docx专题21 一次函数(题型归纳)(解析版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1