分享
分享赚钱 收藏 举报 版权申诉 / 27

类型2022-2023学年人教版九年级数学上册第二十四章圆定向测试试题(含答案解析).docx

  • 上传人:a****
  • 文档编号:635831
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:27
  • 大小:679.08KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 人教版 九年级 数学 上册 第二 十四 定向 测试 试题 答案 解析
    资源描述:

    1、人教版九年级数学上册第二十四章圆定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,正方形的边长为4,以点为圆心,为半径画圆弧得到扇形(阴影部分,点在对角线上)若扇形正好是一个圆锥的侧面展开图,

    2、则该圆锥的底面圆的半径是()AB1CD2、如图,已知长方形中,圆B的半径为1,圆A与圆B内切,则点与圆A的位置关系是()A点C在圆A外,点D在圆A内B点C在圆A外,点D在圆A外C点C在圆A上,点D在圆A内D点C在圆A内,点D在圆A外3、如图,是的内接三角形,是直径,则的长为( )A4BCD4、如图,五边形是O的内接正五边形,则的度数为()ABCD5、如图,点A,B,C,D,E是O上5个点,若ABAO2,将弧CD沿弦CD翻折,使其恰好经过点O,此时,图中阴影部分恰好形成一个“钻戒型”的轴对称图形,则“钻戒型”(阴影部分)的面积为()AB43C44D6、如图,AB是O的直径,BC与O相切于点B,A

    3、C交O于点D,若ACB=50,则BOD等于()A40B50C60D807、若某圆锥的侧面展开图是一个半圆,已知圆锥的底面半径为r,那么圆锥的高为()ABCD8、已知一个扇形的弧长为,圆心角是,则它的半径长为( )A6cmB5cmC4cmD3cm9、如图,O的直径垂直于弦,垂足为若,则的长是()ABCD10、如图,在ABC中, AG平分CAB,使用尺规作射线CD,与AG交于点E,下列判断正确的是()AAG平分CDBC点E是ABC的内心D点E到点A,B,C的距离相等第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知直线m与半径为5cm的O相切于点P,AB是O的一条弦,且,

    4、若AB6cm,则直线m与弦AB之间的距离为 _2、如图,正方形ABCD,边长为4,点P和点Q在正方形的边上运动,且PQ4,若点P从点B出发沿BCDA的路线向点A运动,到点A停止运动;点Q从点A出发,沿ABCD的路线向点D运动,到达点D停止运动它们同时出发,且运动速度相同,则在运动过程中PQ的中点O所经过的路径长为_3、如图,O的直径AB26,弦CDAB,垂足为E,OE:BE5:8,则CD的长为_4、在O中,若弦垂直平分半径,则弦所对的圆周角等于_5、如图,抛物线的图象与坐标轴交于点、,顶点为,以为直径画半圆交轴的正半轴于点,圆心为,是半圆上的一动点,连接,是的中点,当沿半圆从点运动至点时,点运

    5、动的路径长是_三、解答题(5小题,每小题10分,共计50分)1、如图,半径为6的O与RtABC的边AB相切于点A,交边BC于点C,D,B=90,连接OD,AD(1)若ACB=20,求的长(结果保留)(2)求证:AD平分BDO2、如图,已知在O中,直径MN10,正方形ABCD的四个顶点分别在O及半径OM、OP上,并且POM45,求正方形的边长3、如图,在中,以为直径的与交于点,连接(1)求证:;(2)若与相切,求的度数;(3)用无刻度的直尺和圆规作出劣弧的中点(不写作法,保留作图痕迹)4、(1)求图(1)中阴影部分的面积(单位:厘米);(2)如图(2)所示,已知大正方形的边长为10厘米,小正方形

    6、的边长为7厘米,求阴影部分面积(结果保留)5、在中,已知O经过点C,且与相切于点D(1)在图中作出O;(要求:尺规作图,不写作法,保留作图痕迹)(2)若点D是边上的动点,设O与边、分别相交于点E、F,求的最小值-参考答案-一、单选题1、D【解析】【分析】根据题意,扇形ADE中弧DE的长即为圆锥底面圆的周长,即通过计算弧DE的长,再结合圆的周长公式进行计算即可得解【详解】正方形的边长为4是正方形的对角线圆锥底面周长为,解得该圆锥的底面圆的半径是,故选:D【考点】本题主要考查了扇形的弧长公式,圆的周长公式,正方形的性质以及圆锥的相关知识点,熟练掌握弧长公式及圆的周长公式是解决本题的关键2、C【解析

    7、】【分析】根据内切得出圆A的半径,再判断点D、点E到圆心的距离即可【详解】圆A与圆B内切,圆B的半径为1圆A的半径为55点D在圆A内在RtABC中,点C在圆A上故选:C【考点】本题考查点与圆的位置关系、圆与圆的位置关系、勾股定理,熟练掌握点与圆的位置关系是关键3、B【解析】【分析】连接BO,根据圆周角定理可得,再由圆内接三角形的性质可得OB垂直平分AC,再根据正弦的定义求解即可【详解】如图,连接OB,是的内接三角形,OB垂直平分AC,又,,又AD=8,AO=4,解得:,故答案选B【考点】本题主要考查了圆的垂径定理的应用,根据圆周角定理求角度是解题的关键4、D【解析】【分析】先根据正五边形的内角

    8、和求出每个内角,再根据等边对等角得出ABE=AEB,然后利用三角形内角和求出ABE=即可【详解】解:五边形是O的内接正五边形,A=ABC=,AB=AE,ABE=AEB,ABE=,故选:D【考点】本题考查圆内接正五边形的性质,等腰三角形性质,三角形内角和公式,角的和差计算,掌握圆内接正五边形的性质,等腰三角形性质,三角形内角和公式,角的和差计算是解题关键5、A【解析】【分析】连接CD、OE,根据题意证明四边形OCED是菱形,然后分别求出扇形OCD和菱形OCED以及AOB的面积,最后利用割补法求解即可【详解】解:连接CD、OE,由题意可知OCODCEED,弧弧,S扇形ECDS扇形OCD,四边形OC

    9、ED是菱形,OE垂直平分CD,由圆周角定理可知CODCED120,CD222,ABOAOB2,AOB是等边三角形,SAOB22,S阴影2S扇形OCD2S菱形OCED+SAOB2(22)+2(2)+3,故选:A【考点】此题考查了菱形的性质和判定,等边三角形的性质,圆周角定理,求解圆中阴影面面积等知识,解题的关键是根据题意做出辅助线,利用割补法求解6、D【解析】【分析】根据切线的性质得到ABC=90,根据直角三角形的性质求出A,根据圆周角定理计算即可【详解】BC是O的切线,ABC=90,A=90-ACB=40,由圆周角定理得,BOD=2A=80,故选D【考点】本题考查的是切线的性质、圆周角定理,掌

    10、握圆的切线垂直于经过切点的半径是解题的关键7、C【解析】【分析】设圆锥母线长为R,由题意易得圆锥的母线长为,然后根据勾股定理可求解【详解】解:设圆锥母线长为R,由题意得:圆锥的侧面展开图是一个半圆,已知圆锥的底面半径为r,根据圆锥侧面展开图的弧长和圆锥底面圆的周长相等可得:,圆锥的高为;故选C【考点】本题主要考查圆锥侧面展开图及弧长计算公式,熟练掌握圆锥的特征及弧长计算公式是解题的关键8、A【解析】【分析】设扇形半径为rcm,根据扇形弧长公式列方程计算即可.【详解】设扇形半径为rcm,则=5,解得r=6cm.故选A.【考点】本题主要考查扇形弧长公式.9、C【解析】【分析】根据直角三角形的性质可

    11、求出CE=1,再根据垂径定理可求出CD【详解】解:O的直径垂直于弦, ,CE=1CD=2故选:C【考点】本题考查了直角三角形的性质,垂径定理等知识点,能求出CE=DE是解此题的关键10、C【解析】【分析】根据作法可得CD平分ACB,结合题意即可求解【详解】解:由作法得CD平分ACB,AG平分CAB,E点为ABC的内心故答案为:C【考点】此题考查了尺规作图(角平分线),以及三角形角平分线的性质,熟练掌握相关基本性质是解题的关键二、填空题1、1cm或9cm【解析】【分析】根据题意:分两种情况进行分析,当AB与直线位于圆心O的同侧时,连接OA,OP交AB于点E;当AB与直线m位于圆心O的异侧时,连接

    12、OA,OP交于点F;结合图形利用圆的基本性质及勾股定理进行求解即可得出结果【详解】解:根据题意:分两种情况进行分析,如图所示,当AB与直线位于圆心O的同侧时,连接OA,OP交AB于点E,直线m为圆O的切线,在中,如图所示,当AB与直线m位于圆心O的异侧时,连接OA,OP交于点F,结合图形及可得,PF=PO+OF=5+4=9cm,故答案为:或【考点】题目主要考查圆的基本性质及勾股定理解直角三角形,理解题意,作出相应图形进行求解是解题关键2、【解析】【分析】【详解】解:画出点O运动的轨迹,如图虚线部分,则点P从B到A的运动过程中,PQ的中点O所经过的路线长等于3,故答案为:33、24【解析】【分析

    13、】连接OC,由题意得OE=5,BE=8,再由垂径定理得CE=DE,OEC=90,然后由勾股定理求出CE=12,即可求解【详解】解:连接OC,如图所示:直径AB=26,OC=OB=13,OE:BE=5:8,OE=5,BE=8,弦CDAB,CE=DE,OEC=90,CE=12,CD=2CE=24,故答案为:24【考点】本题考查的是垂径定理、勾股定理等知识,熟练掌握垂径定理,由勾股定理求出CE的长是解题的关键4、120或60【解析】【分析】根据弦垂直平分半径及OB=OC证明四边形OBAC是矩形,再根据OB=OA,OE=求出BOE=60,即可求出答案.【详解】设弦垂直平分半径于点E,连接OB、OC、A

    14、B、AC,且在优弧BC上取点F,连接BF、CF,OB=AB,OC=AC,OB=OC,四边形OBAC是菱形,BOC=2BOE,OB=OA,OE=,cosBOE=,BOE=60,BOC=BAC=120,BFC=BOC=60, 弦所对的圆周角为120或60,故答案为:120或60.【考点】此题考查圆的基本知识点:圆的垂径定理,同圆的半径相等的性质,圆周角定理,菱形的判定定理及性质定理,锐角三角函数,熟练掌握圆的各性质定理是解题的关键.5、【解析】【分析】先求出A、B、E的坐标,然后求出半圆的直径为4,由于E为定点,P是半圆AB上的动点,N为EP的中点,所以N的运动路经为直径为2的半圆,计算即可.【详

    15、解】解:,点E的坐标为(1,-2),令y=0,则,解得,A(-1,0),B(3,0),AB=4,由于E为定点,P是半圆AB上的动点,N为EP的中点,所以N的运动路经为直径为2的半圆,如图,点运动的路径长是.【考点】本题属于二次函数和圆的综合问题,考查了运动路径的问题,熟练掌握二次函数和圆的基础是解题的关键.三、解答题1、 (1)(2)见解析【解析】【分析】(1)连接,由,得,由弧长公式即得的长为;(2)根据切于点,可得,有,而,即可得,从而平分(1)解:连接OA,ACB20,AOD40,(2)证明:,切于点,平分【考点】本题考查与圆有关的计算及圆的性质,解题的关键是掌握弧长公式及圆的切线的性质

    16、2、【解析】【分析】证出DCO是等腰直角三角形,得出DCCO,求出BO2AB,连接AO,半径AO5,再根据勾股定理列方程,即可求出AB的长【详解】解:四边形ABCD是正方形,ABCBCD90,ABBCCD,DCO90,又POM45,CDO45,CDCO,BOBC+COBC+CD,BO2AB,连接AO,如图:MN10,AO5,又在RtABO中,AB2+BO2AO2,AB2+(2AB)252,解得:AB,则正方形ABCD的边长为【考点】此题考查了正方形的性质和等腰直角三角形的性质,解题的关键是证出DCO是等腰直角三角形,得出BO2AB,作出辅助线,利用勾股定理列出关于AB的方程3、 (1)证明见详

    17、解(2)(3)作图见详解【解析】【分析】(1)根据直径所对的圆周角是直角、等腰三角形的三线合一即可证明;(2)根据切线的性质可以得到,然后在等腰直角三角形中即可求解;(3)根据等弧所对的圆周角相等,可知可以作出AD的垂直平分线,的角平分线,的角平分线等方法均可得到结论(1)证明:是的直径,(2)与相切,又,(3)如下图,点就是所要作的的中点【考点】本题考查了等腰三角形的三线合一、切线的性质、以及尺规作图、等弧所对的圆周角相等,理解圆的相关知识并掌握基本的尺规作图方法是解题的关键4、(1)图(1)中阴影部分的面积为4平方厘米;(2)阴影部分面积为平方厘米【解析】【分析】(1)由图可知,图(1)中

    18、右边正方形中的阴影部分的面积等于左边正方形中的空白部分的面积,通过割补法可得阴影部分的面积为一个正方形的面积,计算即可得解;(2)阴影部分的面积=梯形ABCG的面积+扇形GCE的面积-三角形ABE的面积,据此解答即可【详解】解:(1)由图可知,图(1)中右边正方形中的阴影部分的面积等于左边正方形中的空白部分的面积,S阴影=22=4(平方厘米);(2)如图,S阴影=S梯形ABCG+S扇形GCE-SABE=25(平方厘米)【考点】本题考查了扇形的面积,梯形的面积,三角形的面积,正方形的面积等知识解题的关键是把阴影部分分成常见的平面图形的和与差,进一步求得面积5、 (1)见详解(2)【解析】【分析】(1)连接CD,用尺规作图,作线段CD的垂直平分线,找到线段CD的中点O,然后以O为圆心,为半径主要作圆即为所作圆(2)过点C作,根据点到直线的距离,垂线段最短可知,点CD为圆的直径时,此时圆的直径最短,根据面积法可得出因为EF也为圆的直径,所以可得出EF最最小值为(1)如图所示,为所作圆(2)如图,作于点D,当CD为过的圆心点O时,此时圆的直径最短EF为的直径,此时EF的长为故EF的最小值为:【考点】本题主要考查了尺规作图,勾股定理,三角形面积求斜边上的高,垂线段最短等知识点的应用,熟练掌握点到直线的距离垂线段最短这性质定理是解此题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年人教版九年级数学上册第二十四章圆定向测试试题(含答案解析).docx
    链接地址:https://www.ketangku.com/wenku/file-635831.html
    相关资源 更多
  • 专题10.4 二项式定理(原卷版).docx专题10.4 二项式定理(原卷版).docx
  • 专题10.3 两个计数原理、排列与组合(解析版).docx专题10.3 两个计数原理、排列与组合(解析版).docx
  • 专题10.3二项式定理及其应用(原卷版).docx专题10.3二项式定理及其应用(原卷版).docx
  • 专题10.2 统计案例(解析版).docx专题10.2 统计案例(解析版).docx
  • 专题10.2 统计案例(原卷版).docx专题10.2 统计案例(原卷版).docx
  • 专题10.2排列组合问题(解析版).docx专题10.2排列组合问题(解析版).docx
  • 专题10.10 统计与概率(2021-2023年)真题训练(解析版).docx专题10.10 统计与概率(2021-2023年)真题训练(解析版).docx
  • 专题10.1 分类加法计数原理与分步乘法计数原理(原卷版).docx专题10.1 分类加法计数原理与分步乘法计数原理(原卷版).docx
  • 专题10.1 分类加法计数原理与分步乘法计数原理(解析版).docx专题10.1 分类加法计数原理与分步乘法计数原理(解析版).docx
  • 专题10-定语从句-冲刺2023年高考每天100道语法小题限时狂练.docx专题10-定语从句-冲刺2023年高考每天100道语法小题限时狂练.docx
  • 专题10-书面表达常用词汇和高级词汇 -2023年高考英语真题分项功能词汇专项突破.docx专题10-书面表达常用词汇和高级词汇 -2023年高考英语真题分项功能词汇专项突破.docx
  • 专题10-19天晨读 晚练四步轻松掌握高考英语核心词汇词形转换.docx专题10-19天晨读 晚练四步轻松掌握高考英语核心词汇词形转换.docx
  • 专题10-12 新民主主义革命时期(好题过关)(原卷版).docx专题10-12 新民主主义革命时期(好题过关)(原卷版).docx
  • 专题10--《2021届高考英语阅读理解完型填空600高频单词20练(基础练 拔高练)》(10).docx专题10--《2021届高考英语阅读理解完型填空600高频单词20练(基础练 拔高练)》(10).docx
  • 专题10 阅读还原(杭州专用)-2023年中考英语逆袭冲刺(三年真题热门考点提炼 名校最新模拟速递)专训(浙江省专用).docx专题10 阅读还原(杭州专用)-2023年中考英语逆袭冲刺(三年真题热门考点提炼 名校最新模拟速递)专训(浙江省专用).docx
  • 专题10 阅读表达-8年(2014-2021)苏州中考英语真题分析.docx专题10 阅读表达-8年(2014-2021)苏州中考英语真题分析.docx
  • 专题10 阅读理解应用文(解析版).docx专题10 阅读理解应用文(解析版).docx
  • 专题10 阅读理解应用文(原卷版).docx专题10 阅读理解应用文(原卷版).docx
  • 专题10 阅读理解之说明文(名校最新期末真题)-2022-2023学年七年级英语下学期期末复习查缺补漏冲刺满分(牛津译林版).docx专题10 阅读理解之说明文(名校最新期末真题)-2022-2023学年七年级英语下学期期末复习查缺补漏冲刺满分(牛津译林版).docx
  • 专题10 阅读理解之说明文-2021年高考英语题型大冲关(上海专用).docx专题10 阅读理解之说明文-2021年高考英语题型大冲关(上海专用).docx
  • 专题10 阅读理解之应用文(名校最新期末真题)-2022-2023学年八年级英语下学期期末考点大串讲(牛津译林版).docx专题10 阅读理解之应用文(名校最新期末真题)-2022-2023学年八年级英语下学期期末考点大串讲(牛津译林版).docx
  • 专题10 阅读理解之应用文-2024年高考英语二轮热点题型归纳与变式演练(新高考通用)(解析版).docx专题10 阅读理解之应用文-2024年高考英语二轮热点题型归纳与变式演练(新高考通用)(解析版).docx
  • 专题10 阅读理解20篇(名校最新期末真题)-2021-2022学年八年级英语下学期期末复习查缺补漏冲刺满分(人教版).docx专题10 阅读理解20篇(名校最新期末真题)-2021-2022学年八年级英语下学期期末复习查缺补漏冲刺满分(人教版).docx
  • 专题10 阅读填表(5空)-冲刺2022年中考英语必考题型终极押题(江苏通用).docx专题10 阅读填表(5空)-冲刺2022年中考英语必考题型终极押题(江苏通用).docx
  • 专题10 阅读回答问题10篇-2023届九年级英语名校真题分类汇编(江苏专用).docx专题10 阅读回答问题10篇-2023届九年级英语名校真题分类汇编(江苏专用).docx
  • 专题10 阅读回答问题-备战2022中考英语全国名校最新模拟试题分类汇编.docx专题10 阅读回答问题-备战2022中考英语全国名校最新模拟试题分类汇编.docx
  • 专题10 阅读回答问题-备战2022中考英语全国名校最新模拟试题分类汇编(1).docx专题10 阅读回答问题-备战2022中考英语全国名校最新模拟试题分类汇编(1).docx
  • 专题10 问鼎中考宾语从句在手-【口袋书】2022年中考英语背诵手册(牛津译林版).docx专题10 问鼎中考宾语从句在手-【口袋书】2022年中考英语背诵手册(牛津译林版).docx
  • 专题10 透过语境巧记高考英语3500词.docx专题10 透过语境巧记高考英语3500词.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1