分享
分享赚钱 收藏 举报 版权申诉 / 34

类型2022-2023学年度人教版九年级数学上册第二十四章圆专项测试试卷(解析版).docx

  • 上传人:a****
  • 文档编号:641455
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:34
  • 大小:1.58MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 度人 九年级 数学 上册 第二 十四 专项 测试 试卷 解析
    资源描述:

    1、人教版九年级数学上册第二十四章圆专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABCD中,为的直径,O和相切于点E,和相交于点F,已知,则的长为()ABCD22、如图所示,一个半径为r(

    2、r1)的图形纸片在边长为10的正六边形内任意运动,则在该六边形内,这个圆形纸片不能接触到的部分面积是()ABCD3、以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D为第一象限内O上的一点,若DAB25,则OCD()A50B40C70D304、如图,AB是的直径,点B是弧CD的中点,AB交弦CD于E,且,则()A2B3C4D55、如图,公园内有一个半径为18米的圆形草坪,从地走到地有观赏路(劣弧)和便民路(线段).已知、是圆上的点,为圆心,小强从走到,走便民路比走观赏路少走()米.ABCD6、已知中,点P为边AB的中点,以点C为圆心,长度r为半径画圆,使得点A,P在C内,点B在C外

    3、,则半径r的取值范围是()ABCD7、往直径为的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为()ABCD8、在O中按如下步骤作图:(1)作O的直径AD;(2)以点D为圆心,DO长为半径画弧,交O于B,C两点;(3)连接DB,DC,AB,AC,BC根据以上作图过程及所作图形,下列四个结论中错误的是()AABD90BBADCBDCADBCDAC2CD9、已知:如图,PA,PB分别与O相切于A,B点,C为O上一点,ACB65,则APB等于()A65B50C45D4010、如图,在ABC中,ACB90,ACBC,AB4cm,CD是中线,点E、F同时从点D出发,以相同的速度分别沿

    4、DC、DB方向移动,当点E到达点C时,运动停止,直线AE分别与CF、BC相交于G、H,则在点E、F移动过程中,点G移动路线的长度为()A2BC2D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,抛物线的图象与坐标轴交于点、,顶点为,以为直径画半圆交轴的正半轴于点,圆心为,是半圆上的一动点,连接,是的中点,当沿半圆从点运动至点时,点运动的路径长是_2、如图 1 是台湾某品牌手工蛋卷的外包装盒,其截面图如图 2 所示,盒子上方是一段圆弧(弧 MN ).D,E 为手提带的固定点, DE 与弧MN 所在的圆相切,DE=2.手提带自然下垂时,最低点为C,且呈抛物线形,抛物线

    5、与弧MN 交于点 F,G.若CDE 是等腰直角三角形,且点 C,F 到盒子底部 AB 的距离分别为 1, ,则弧MN 所在的圆的半径为_ 3、如图,在RtABC中,ACB=30,E为内切圆,若BE=4,则BCE的面积为_. 4、如图,AB是O的直径,点C,D,E都在O上,155,则2_5、如图,ABC内接于O,CAB=30,CBA=45,CDAB于点D,若O的半径为2,则CD的长为_三、解答题(5小题,每小题10分,共计50分)1、如图,已知抛物线的顶点坐标为M,与x轴相交于A,B两点(点B在点A的右侧),与y轴相交于点C(1)用配方法将抛物线的解析式化为顶点式:(),并指出顶点M的坐标;(2

    6、)在抛物线的对称轴上找点R,使得CR+AR的值最小,并求出其最小值和点R的坐标;(3)以AB为直径作N交抛物线于点P(点P在对称轴的左侧),求证:直线MP是N的切线2、如图,四边形内接于,对角线,垂足为,于点,直线与直线于点(1)若点在内,如图1,求证:和关于直线对称;(2)连接,若,且与相切,如图2,求的度数3、已知,正方形ABCD中,M、N分别为AD边上的两点,连接BM、CN并延长交于一点H,连接AH,E为BM上一点,连接AE、CE,ECHMNH90(1)如图1,若E为BM的中点,且DM3AM,求线段AB的长(2)如图2,若点F为BE中点,点G为CF延长线上一点,且EG/BC,CEGE,求

    7、证:(3)如图3,在(1)的条件下,点P为线段AD上一动点,连接BP,作CQBP于Q,将BCQ沿BC翻折得到BCl,点K、R分别为线段BC、Bl上两点,且BI3RI,BC4BK,连接CR、IK交于点T,连接BT,直接写出BCT面积的最大值4、如图,在四边形中,.是四边形内一点,且.求证:(1);(2)四边形是菱形.5、等边三角形的边长为1厘米,面积为0.43平方厘米以点为圆心,长为半径在三角形外画弧,交的延长线于点,形成扇形;以点为圆心,长为半径画弧,交的延长线于点,形成扇形;以点为圆心,长为半径画弧,交的延长线于点,形成扇形(1)求所得的图形的周长;(结果保留)(2)照此规律画至第十个扇形,

    8、求所围成的图形的面积以及所画出的所有弧长的和(结果保留)-参考答案-一、单选题1、C【解析】【分析】首先求出圆心角EOF的度数,再根据弧长公式,即可解决问题【详解】解:如图连接OE、OF,CD是O的切线,OECD,OED=90,四边形ABCD是平行四边形,C=60,A=C=60,D=120,OA=OF,A=OFA=60,DFO=120,EOF=360-D-DFO-DEO=30,的长故选:C【考点】本题考查切线的性质、平行四边形的性质、弧长公式等知识,解题的关键是求出圆心角的度数,记住弧长公式2、C【解析】【分析】当运动到正六边形的角上时,圆与两边的切点分别为,连接,根据正六边形的性质可知,故,

    9、再由锐角三角函数的定义用表示出的长,可知圆形纸片不能接触到的部分的面积,由此可得出结论【详解】解:如图所示,连接,此多边形是正六边形,圆形纸片不能接触到的部分的面积故选:C【考点】本题考查的是正多边形和圆,熟知正六边形的性质是解答此题的关键3、C【解析】【分析】根据圆周角定理求出DOB,根据等腰三角形性质求出OCD=ODC,根据三角形内角和定理求出即可【详解】解:连接OD,DAB=25,BOD=2DAB=50,COD=90-50=40,OC=OD,OCD=ODC=(180-COD)=70,故选:C【考点】本题考查了圆周角定理,等腰三角形性质,三角形内角和定理的应用,主要考查学生的推理能力,题目

    10、比较典型,难度适中4、C【解析】【分析】是的直径,点是弧的中点,从而可知,然后利用勾股定理即可求出的长度【详解】解:设半径为,连接,是的直径,点是弧的中点,由垂径定理可知:,且点是的中点,由勾股定理可知:,由勾股定理可知:,解得:,故选:C【考点】本题考查垂径定理,解题的关键是正确理解垂径定理以及勾股定理,本题属于中等题型5、D【解析】【分析】作OCAB于C,如图,根据垂径定理得到AC=BC,再利用等腰三角形的性质和三角形内角和计算出A,从而得到OC和AC,可得AB,然后利用弧长公式计算出的长,最后求它们的差即可【详解】解:作OCAB于C,如图,则AC=BC,OA=OB,A=B=(180-AO

    11、B)=30,在RtAOC中,OC=OA=9,AC=,AB=2AC=,又=,走便民路比走观赏路少走米,故选D【考点】本题考查了垂径定理:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题6、D【解析】【分析】根据勾股定理,得AB=5,由P为AB的中点,得CP=,要使点A,P在C内,r3,r4,从而确定r的取值范围.【详解】点A在C内,r3,点B在C外,r4,故选:D.【考点】本题考查了点和圆的位置关系,利用数形结合思想是解题的关键.7、C【解析】【分析】过点O作ODAB于D,交O于E,连接OA,根据垂径定理即可求得AD的长,又由O的直径为,求得OA的长,然后根据勾股定理

    12、,即可求得OD的长,进而求得油的最大深度的长【详解】解:过点O作ODAB于D,交O于E,连接OA,由垂径定理得:,O的直径为,在中,由勾股定理得:,油的最大深度为,故选:【考点】本题主要考查了垂径定理的知识此题难度不大,解题的关键是注意辅助线的作法,构造直角三角形,利用勾股定理解决8、D【解析】【分析】根据作图过程可知:AD是O的直径,根据垂径定理即可判断A、B、C正确,再根据DCOD,可得AD2CD,进而可判断D选项【详解】解:根据作图过程可知:AD是O的直径,ABD90,A选项正确;BDCD,,BADCBD,B选项正确;根据垂径定理,得ADBC,C选项正确;DCOD,AD2CD,D选项错误

    13、故选:D【考点】本题考查作图-复杂作图、含30度角的直角三角形、垂径定理、圆周角定理,解决本题的关键是熟练掌握相关知识点9、B【解析】【分析】连接OA,OB根据圆周角定理和四边形内角和定理求解即可【详解】连接OA,OB,PA、PB切O于点A、B,PAOPBO90,由圆周角定理知,AOB2ACB130,APB360PAOPBOAOB360909013050故选:B【考点】本题考查了切线的性质、圆周角定理、以及四边形的内角和为360度10、D【解析】【分析】【详解】解:如图,CACB,ACB90,ADDB,CDAB,ADECDF90,CDADDB,在ADE和CDF中,ADECDF(SAS),DAE

    14、DCF,AEDCEG,ADECGE90,A、C、G、D四点共圆,点G的运动轨迹为弧CD,AB4,ABAC,AC2,OAOC,DADC,OAOC,DOAC,DOC90,点G的运动轨迹的长为故选:D二、填空题1、【解析】【分析】先求出A、B、E的坐标,然后求出半圆的直径为4,由于E为定点,P是半圆AB上的动点,N为EP的中点,所以N的运动路经为直径为2的半圆,计算即可.【详解】解:,点E的坐标为(1,-2),令y=0,则,解得,A(-1,0),B(3,0),AB=4,由于E为定点,P是半圆AB上的动点,N为EP的中点,所以N的运动路经为直径为2的半圆,如图,点运动的路径长是.【考点】本题属于二次函

    15、数和圆的综合问题,考查了运动路径的问题,熟练掌握二次函数和圆的基础是解题的关键.2、.【解析】【分析】以DE的垂直平分线为y轴,AB所在的直线为x轴建立平面直角坐标系,设抛物线的表达式为y=ax2+1,因为CDE是等腰直角三角形,DE=2,得点E的坐标为(1,2),可得抛物线的表达式为y=x2+1,把当y代入抛物线表达式,求得MH的长,再在RtFHM中,用勾股定理建立方程,求得所在的圆的半径【详解】如图,以DE的垂直平分线为y轴,AB所在的直线为x轴建立平面直角坐标系,设所在的圆的圆心为P,半径为r,过F作y轴的垂线交y轴于H,设抛物线的表达式为y=ax2+1CDE是等腰直角三角形,DE=2,

    16、点E的坐标为(1,2),代入抛物线的表达式,得:2=a+1,a=1,抛物线的表达式为y=x2+1,当y时,即,解得:,FHFHM=90,DE与所在的圆相切,解得:,所在的圆的半径为故答案为【考点】本题考查了圆的切线的性质,待定系数法求抛物线的表达式,垂径定理解题的关键是建立合适的平面直角坐标系得出抛物线的表达式3、【解析】【分析】如图(见解析),先根据三角形内切圆的性质、直角三角形的性质、切线长定理可求出,再设,利用勾股定理可求出x的值,从而可得BC的长,然后利用三角形的面积公式即可得【详解】如图,设圆E与三边的相切点分别为点,连接则,且由题意得:,圆E为的内切圆平分,BE平分,则在中,在中,

    17、由切线长定理得:设,则,在中,由勾股定理得:即解得则的面积为故答案为:【考点】本题考查了三角形内切圆的性质、切线长定理、圆的切线的性质、勾股定理等知识点,掌握理解三角形内切圆的性质是解题关键4、35【解析】【分析】如图(见解析),连接AD,先根据圆周角定理可得,从而可得,再根据圆周角定理可得,由此即可得【详解】如图,连接ADAB是O的直径,即又由圆周角定理得:故答案为:35【考点】本题考查了圆周角定理,熟记圆周角定理是解题关键5、【解析】【分析】连接OA,OC,根据COA=2CBA=90可求出AC=,然后在RtACD中利用三角函数即可求得CD的长.【详解】解:连接OA,OC,COA=2CBA=

    18、90,在RtAOC中,AC=,CDAB,在RtACD中,CD=ACsinCAD=,故答案为.【考点】本题考查了圆周角定理以及锐角三角函数,根据题意作出常用辅助线是解题关键.三、解答题1、(1),M(,);(2),(,);(3)证明见试题解析【解析】【详解】试题分析:(1)利用配方法把一般式转化为顶点式,然后根据二次函数的性质求出抛物线的顶点坐标;(2)连接BC,则BC与对称轴的交点为R,此时CR+AR的值最小;先求出点A、B、C的坐标,再利用待定系数法求出直线BC的解析式,进而求出其最小值和点R的坐标;(3)设点P坐标为(x,)根据NPAB=,列出方程,解方程得到点P坐标,再计算得出,由勾股定

    19、理的逆定理得出MPN=90,然后利用切线的判定定理即可证明直线MP是N的切线试题解析:(1)=,抛物线的解析式化为顶点式为:,顶点M的坐标是(,);(2),当y=0时,解得x=1或6,A(1,0),B(6,0),x=0时,y=3,C(0,3)连接BC,则BC与对称轴x=的交点为R,连接AR,则CR+AR=CR+BR=BC,根据两点之间线段最短可知此时CR+AR的值最小,最小值为BC=设直线BC的解析式为,B(6,0),C(0,3),解得:,直线BC的解析式为:,令x=,得y=,R点坐标为(,);(3)设点P坐标为(x,)A(1,0),B(6,0),N(,0),以AB为直径的N的半径为AB=,N

    20、P=,即,移项得,得:,整理得:,解得(与A重合,舍去),(在对称轴的右侧,舍去),(与B重合,舍去),点P坐标为(2,2)M(,),N(,0),=,=, =,MPN=90,点P在N上,直线MP是N的切线考点:1二次函数综合题;2最值问题;3切线的判定;4压轴题2、(1)见解析;(2)【解析】【分析】(1)根据垂直及同弧所对圆周角相等性质,可得,可证与全等,得到,进一步即可证点和关于直线成轴对称;(2)作出相应辅助线如解析图,可得与全等,利用全等三角形的性质及切线的性质,可得,根据平行线的性质及三角形内角和即可得出答案【详解】解:(1)证明:,又同弧所对圆周角相等,在与中,又,点和关于直线成轴

    21、对称;(2)如图,延长交于点,连接,、四点共圆,、四点共圆,在与中,为等腰直角三角形,又,与相切,【考点】题目主要考查圆的有关性质、三角形全等、成轴对称、平行线性质等,作出相应辅助线及对各知识点的熟练运用是解题的关键3、 (1)4(2)证明见解析(3)【解析】【分析】(1)由正方形ABCD的性质,可得到ABM为直角三角形,再由E为BM中点,得到BM=2AE,最后由勾股定理求得AB的长度;(2)过点A作AYBH于点Y,由EGBC,CEGE,F为BE中点,可得GEFCBF,从而得到BCE为等腰三角形,再根据角的关系,易得ECGECH=BCD=45,得到HFC为等腰直角三角形,再根据ABYBCF,得

    22、到BM=CF,AY=BF,从而转化得到结论;(3)当P、D重合时得到最大面积,以B为原点建立直角坐标系,求出坐标和表达式,联立方程组求解,即可得出答案(1)解:四边形ABCD为正方形,且DM3AM,BAM=90,AD=AB=4AM,ABM为直角三角形,E为BM的中点,BM=2AE=,在RtABM中,设AM=x,则AB=4x,解得,AB=4;(2)过点A作AYBH于点Y,EG/BC,CEGE,G=BCG=ECG,F为BE的中点,GEFCBF(AAS),GE=BC,BCE为等腰三角形,CFBE,CFE=90;ECHMNH90,MNH=CND,CNDNCD=90,ECH=NCD,ECGECH=BCD

    23、=45,HFC为等腰直角三角形,CF=HF;ABECBE=90,CBEBCF=90,ABE=BCF,AB=BC,AYB=BFC=90,ABYBCF(AAS),BY=CF,AY=BF,BY=HFBY-FY=HF-FYBF=HY=AY,AHY是等腰直角三角形,,;(3)BQC=90,点Q在以BC为直径的半圆弧上运动,当P点与D点重合时,此时Q点离BC最远,QBC和IBC面积最大,此时BCT面积最大;CQBP,CBQ为等腰直角三角形,由翻折可得,CBI为等腰直角三角形,建立如图直角坐标系,作RSBC,TVBC,由(1)中结论可知:B(0,0),C(4,0),I(2,),BI3RI,BC4BK,解得R

    24、S=,R,K(1,0),直线KI解析式为:,直线CR解析式为:,联立,解得,即T,【考点】本题属于四边形综合题,考查正方形的性质、全等三角形证明、翻折问题、等腰三角形的性质等,熟练掌握每个性质的核心内容,理清相互之间的联系,属于压轴题4、(1)证明见解析;(2)证明见解析.【解析】【详解】分析:(1)先证点、共圆,从而得到,又,即可得出结论;(2) 连接,证得到又由于,,结合可得BO=BC, 从而四边形是菱形.详解:(1).点、在以点为圆心,为半径的圆上.又,.(2)证明:如图,连接.,.,.,.又.,.又,四边形是菱形.点睛:本题考查圆周角定理、全等三角形的判定和性质、菱形的判定等知识,解题

    25、的关键是灵活应用圆周角定理,学会添加常用辅助线,属于中考常考题型5、(1)厘米;(2)平方厘米,厘米【解析】【分析】(1)本题按照弧长公式依次求解扇形ADC、扇形DBE、扇形ECF的弧长,最后对应相加即可(2)本题利用扇形面积公式求解第一个扇形至第三个扇形的面积,结合第一问各扇形弧长结果总结规律,得出普遍规律后将数值代入公式,累次相加即可求解【详解】(1)由已知得:扇形ADC的半径长为1,圆心角为120;扇形DBE半径长为2,圆心角为120;扇形ECF半径长为3,圆心角为120故据弧长公式可得:扇形ADC弧长;扇形DBE弧长;扇形ECF弧长;故图形CDEFC的周长为:(2)根据扇形面积公式可得:第一个扇形的面积为,由上一问可知其弧长为;第二个扇形的面积为,弧长为;第三个扇形的面积为,弧长为;总结规律可得第个扇形面积为,第个扇形弧长为故画至第十个图形所围成的图形面积和为:;所有的弧长和为:【考点】本题考查扇形与弧长公式的延伸,出题角度较为新颖,解题关键在于需要根据图形特点总结规律,其次注意计算即可

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度人教版九年级数学上册第二十四章圆专项测试试卷(解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-641455.html
    相关资源 更多
  • 专题3 第四单元 第1课时.docx专题3 第四单元 第1课时.docx
  • 专题3 第二单元 第1课时.docx专题3 第二单元 第1课时.docx
  • 专题3 第三单元.docx专题3 第三单元.docx
  • 专题3 第三单元 第1课时.docx专题3 第三单元 第1课时.docx
  • 专题3 第一单元.docx专题3 第一单元.docx
  • 专题3 第一单元 第2课时.docx专题3 第一单元 第2课时.docx
  • 专题3 第一单元 第1课时.docx专题3 第一单元 第1课时.docx
  • 专题3 第14课时 带电粒子在复合场中的运动.docx专题3 第14课时 带电粒子在复合场中的运动.docx
  • 专题3 第11课时 电场.docx专题3 第11课时 电场.docx
  • 专题3 秦汉时期 2023年中考历史一轮复习专题训练(湖南专用).docx专题3 秦汉时期 2023年中考历史一轮复习专题训练(湖南专用).docx
  • 专题3 石油化工的基础物质——烃-【知识清单】2022-2023学年高二化学单元复习知识清单(苏教版2019选择性必修3).docx专题3 石油化工的基础物质——烃-【知识清单】2022-2023学年高二化学单元复习知识清单(苏教版2019选择性必修3).docx
  • 专题3 电学(解析版).docx专题3 电学(解析版).docx
  • 专题3 电学(原卷版).docx专题3 电学(原卷版).docx
  • 专题3 物态变化 物态变化章末综合检测(教师版).docx专题3 物态变化 物态变化章末综合检测(教师版).docx
  • 专题3 物态变化 物态变化章末综合检测(学生版).docx专题3 物态变化 物态变化章末综合检测(学生版).docx
  • 专题3 段落分析类-初中生一周轻松学记叙文阅读.docx专题3 段落分析类-初中生一周轻松学记叙文阅读.docx
  • 专题3 概率进一步认识(能力提升)(解析版).docx专题3 概率进一步认识(能力提升)(解析版).docx
  • 专题3 概率进一步认识(能力提升)(原卷版).docx专题3 概率进一步认识(能力提升)(原卷版).docx
  • 专题3 概率进一步认识(知识解读)(北师大版).docx专题3 概率进一步认识(知识解读)(北师大版).docx
  • 专题3 概率进一步认识(知识解读)-2022-2023学年九年级数学上册《同步考点解读•专题训练》(北师大版).docx专题3 概率进一步认识(知识解读)-2022-2023学年九年级数学上册《同步考点解读•专题训练》(北师大版).docx
  • 专题3 概率进一步认识(专项训练)-2022-2023学年九年级数学上册《同步考点解读•专题训练》(北师大版).docx专题3 概率进一步认识(专项训练)-2022-2023学年九年级数学上册《同步考点解读•专题训练》(北师大版).docx
  • 专题3 机械能与曲线运动的综合问题-2020-2021学年高一物理人教版必修二暑期训练资料.docx专题3 机械能与曲线运动的综合问题-2020-2021学年高一物理人教版必修二暑期训练资料.docx
  • 专题3 有理数的简便计算-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(原卷版).docx专题3 有理数的简便计算-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(原卷版).docx
  • 专题3 整式 2023年中考数学一轮复习专题训练(北京专用).docx专题3 整式 2023年中考数学一轮复习专题训练(北京专用).docx
  • 专题3 因式分解 安徽省2023年中考数学一轮复习专题训练.docx专题3 因式分解 安徽省2023年中考数学一轮复习专题训练.docx
  • 专题3 倍数和因数-小升初数学复习精编讲义(知识清单 经典例题 强化训练 名校冲刺).docx专题3 倍数和因数-小升初数学复习精编讲义(知识清单 经典例题 强化训练 名校冲刺).docx
  • 专题3 从海水中获得的化学物质-【知识清单】2022-2023学年高一化学上学期单元复习知识清单(苏教版2019必修第一册).docx专题3 从海水中获得的化学物质-【知识清单】2022-2023学年高一化学上学期单元复习知识清单(苏教版2019必修第一册).docx
  • 专题3 世界区域地图专项训练-2021高考地理名师常考地图重难点专项突破.docx专题3 世界区域地图专项训练-2021高考地理名师常考地图重难点专项突破.docx
  • 专题3除法-2023-2024学年四年级上册数学计算大通关(北师大版).docx专题3除法-2023-2024学年四年级上册数学计算大通关(北师大版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1