分享
分享赚钱 收藏 举报 版权申诉 / 24

类型2022年人教版九年级数学上册第二十二章二次函数同步训练试卷(附答案详解).docx

  • 上传人:a****
  • 文档编号:695867
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:24
  • 大小:485.05KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 年人教版 九年级 数学 上册 第二十二 二次 函数 同步 训练 试卷 答案 详解
    资源描述:

    1、人教版九年级数学上册第二十二章二次函数同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、把抛物线的图象向左平移1个单位,再向上平移2个单位,所得的抛物线的函数关系式是()ABCD2、在平面直角坐标系

    2、中,对于点,若,则称点P为“同号点”,下列函数的图象上不存在“同号点”的是()ABCD3、已知函数ykx27x7的图象和x轴有交点,则k的取值范围是()ABC且k0D且k04、把抛物线向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是()ABCD5、二次函数yax2+bx+c的图象如图所示,则一次函数ybx+c的图象不经过()A第一象限B第二象限C第三象限D第四象限6、二次函数的图象如图所示,对称轴是直线下列结论:;(为实数)其中结论正确的个数为()A1个B2个C3个D4个7、当0x3,函数yx2+4x+5的最大值与最小值分别是()A9,5B8,5C9,8D8,48、在同一坐

    3、标系中,二次函数与一次函数的图像可能是()ABCD9、抛物线y=(x2)21可以由抛物线y=x2平移而得到,下列平移正确的是()A先向左平移2个单位长度,然后向上平移1个单位长度B先向左平移2个单位长度,然后向下平移1个单位长度C先向右平移2个单位长度,然后向上平移1个单位长度D先向右平移2个单位长度,然后向下平移1个单位长度10、若关于x的二次函数yax2+bx的图象经过定点(1,1),且当x1时y随x的增大而减小,则a的取值范围是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、请写出一个开口向下,并且与轴交于点的抛物线的解析式_2、当1x3时,二次函数y

    4、x24x+5有最大值m,则m_3、在直角坐标系中,已知直线经过点和点,抛物线y=ax2-x+2(a0)与线段MN有两个不同的交点,则a的取值范围是_4、某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是_元5、如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0)和B(3,2),不等式x2+bx+cx+m的解集为

    5、_三、解答题(5小题,每小题10分,共计50分)1、已知:二次函数(1)通过配方,将其写成的形式;(2)求出函数图象与轴的交点的坐标;(3)当时,直接写出的取值范围;(4)当_时,随的增大而减少2、某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件假定每月的销售件数y是销售价格x(单位:元)的一次函数(1)求y关于x的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润3、已知关于的二次函数(1)求证:不论为何实数,该二次函数的图象与轴总有两个公共点;(2)若,两点在该二次函数的图象上,直接写出与

    6、的大小关系;(3)若将抛物线沿轴翻折得到新抛物线,当时,新抛物线对应的函数有最小值3,求的值4、在平面直角坐标系中,抛物线的对称轴为求的值及抛物线与轴的交点坐标;若抛物线与轴有交点,且交点都在点,之间,求的取值范围5、某企业接到生产一批设备的订单,要求不超过12天完成这种设备的出厂价为1200元/台,该企业第一天生产22台设备,第二天开始,每天比前一天多生产2台若干天后,每台设备的生产成本将会增加,设第x天(x为整数)的生产成本为m(元台),m与x的关系如图所示(1)若第x天可以生产这种设备y台,则y与x的函数关系式为_,x的取值范围为_;(2)第几天时,该企业当天的销售利润最大?最大利润为多

    7、少?(3)求当天销售利润低于10800元的天数-参考答案-一、单选题1、A【解析】【分析】求出原抛物线的顶点坐标,再根据向左平移横坐标减,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可【详解】解:抛物线的顶点坐标为(2,1),向左平移1个单位,再向上平移2个单位后的顶点坐标是(1,3)所得抛物线解析式是故选:A【考点】本题考查了二次函数图象的平移,利用顶点的变化确定抛物线解析式的变化更简便2、C【解析】【分析】由题意,图象经过第一和第三象限的函数都是满足条件的,由此判断即可【详解】解:由题意,图象经过第一和第三象限的函数都是满足条件的,函数的图象在二、四象限,不满足

    8、条件,故选:C【考点】本题考查了反比函数的性质,一次函数的性质,二次函数的性质可以用特值法进行快速的排除3、B【解析】【分析】对分情况进行讨论,时,为一次函数,符合题意;时,二次函数,求解即可【详解】解:当时,函数为,为一次函数,与x轴有交点,符合题意;当,函数为,为二次函数,因为图像与x轴有交点所以,解得且综上,故选B【考点】此题考查了二次函数与x轴有交点的条件,解题的关键是对分情况进行讨论,易错点是容易忽略的情况4、D【解析】【分析】直接根据“左加右减,上加下减”的原则进行解答即可【详解】由“左加右减”的原则可知,抛物线y=2x2向右平移2个单位所得抛物线是y=2(x2)2;由“上加下减”

    9、的原则可知,抛物线y=2(x2)2向下平移1个单位所得抛物线是y=2(x2)21.故选D.【考点】本题考查了二次函数图象与几何变换,解题的关键是掌握二次函数图象与几何变换.5、D【解析】【分析】根据二次函数图象的开口方向、对称轴判断出a、b的正负情况,再由一次函数的性质解答【详解】解:由势力的线与y轴正半轴相交可知c0,对称轴x=-0,得b0 所以一次函数ybx+c的图象经过第一、二、三象限,不经过第四象限故选:D【考点】本题考查二次函数图象和一次函数图象的性质,要掌握它们的性质才能灵活解题6、C【解析】【分析】由抛物线开口方向得到,对称轴在轴右侧,得到与异号,又抛物线与轴正半轴相交,得到,可

    10、得出,选项错误;把代入中得,所以正确;由时对应的函数值,可得出,得到,由,得到,选项正确;由对称轴为直线,即时,有最小值,可得结论,即可得到正确【详解】解:抛物线开口向上,抛物线的对称轴在轴右侧,抛物线与轴交于负半轴,错误;当时,把代入中得,所以正确;当时,即,所以正确;抛物线的对称轴为直线,时,函数的最小值为,即,所以正确故选C【考点】本题考查了二次函数图象与系数的关系:二次项系数决定抛物线的开口方向和大小当时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定对称轴的位置:当与同号时,对称轴在轴左;当与异号时,对称轴在轴右常数项决定抛物线与轴交点:抛物线与轴交于抛物线与轴

    11、交点个数由判别式确定:时,抛物线与轴有2个交点;时,抛物线与轴有1个交点;时,抛物线与轴没有交点7、A【解析】【分析】利用配方法把原方程化为顶点式,再根据二次函数的性质即可解答【详解】yx2+4x+5x2+4x4+4+5(x2)2+9,当x2时,最大值是9,0x3,x0时,最小值是5,故选:A【考点】本题考查二次函数的最值,掌握二次函数的性质与利用配方法将一般式改为顶点式是解答本题的关键8、C【解析】【分析】直线与抛物线联立解方程组,若有解,则图象有交点,若无解,则图象无交点;根据二次函数的对称轴在y左侧,a,b同号,对称轴在y轴右侧a,b异号,以及当a大于0时开口向上,当a小于0时开口向下,

    12、来分析二次函数;同时在假定二次函数图象正确的前提下,根据一次函数的一次项系数为正,图象从左向右逐渐上升,一次项系数为负,图象从左向右逐渐下降;一次函数的常数项为正,交y轴于正半轴,常数项为负,交y轴于负半轴如此分析下来,二次函数与一次函数无矛盾者为正确答案【详解】解:由方程组得ax2a,a0x21,该方程无实数根,故二次函数与一次函数图象无交点,排除BA:二次函数开口向上,说明a0,对称轴在y轴右侧,则b0;但是一次函数b为一次项系数,图象显示从左向右上升,b0,两者矛盾,故A错;C:二次函数开口向上,说明a0,对称轴在y轴右侧,则b0;b为一次函数的一次项系数,图象显示从左向右下降,b0,两

    13、者相符,故C正确;D:二次函数的图象应过原点,此选项不符,故D错故选C【考点】本题考查的是同一坐标系中二次函数与一次函数的图象问题,必须明确二次函数的开口方向与a的正负的关系,a,b的符号与对称轴的位置关系,并结合一次函数的相关性质进行分析,本题中等难度偏上9、D【解析】【详解】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究详解:抛物线y=x2顶点为(0,0),抛物线y=(x2)21的顶点为(2,1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x2)21的图象故选D点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定

    14、平移方向10、D【解析】【分析】根据题意开口向上,且对称轴1,ab1,即可得到1,从而求解【详解】由二次函数yax2+bx可知抛物线过原点,抛物线定点(1,1),且当x-1时,y随x的增大而减小,抛物线开口向上,且对称轴1,ab1,a0,b1a,1,故选:D【考点】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,根据题意得关于a的不等式组是解题的关键二、填空题1、【解析】【分析】根据二次函数的性质,抛物线开口向下a0,然后写出即可【详解】解:抛物线解析式为(答案不唯一)故答案为:(答案不唯一)【考点】本题考查了二次函数的性质,开放型题目,主要利用了抛物线的开口方向与二次项系数a

    15、的关系2、10【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以求得m的值,本题得以解决【详解】二次函数yx24x+5(x2)2+1,该函数开口向上,对称轴为x2,当1x3时,二次函数yx24x+5有最大值m,当x1时,该函数取得最大值,此时m(12)2+110,故答案为:10【考点】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答3、或【解析】【分析】由题意可求点,点,分,两种情况讨论,根据题意列出不等式组,可求a的取值范围【详解】直线经过点和点,抛物线与线段MN有两个不同的交点,当时,解得:,当时,解得:,综上所述:或.故答案为或.【考点】

    16、本题考查二次函数图象与系数的关系,一次函数图象上点的坐标特征,二次函数图象点的坐标特征,利用分类讨论思想解决问题是本题的关键4、1264【解析】【分析】根据题意,总利润=快餐的总利润快餐的总利润,而每种快餐的利润=单件利润对应总数量,分别对两份快餐前后利润和数量分析,代入求解即可【详解】解:设种快餐的总利润为,种快餐的总利润为,两种快餐的总利润为,设快餐的份数为份,则B种快餐的份数为份据题意: 当的时候,W取到最大值1264,故最大利润为1264元故答案为:1264【考点】本题考查的是二次函数的应用,正确理解题意、通过具体问题找到变化前后的关系是解题关键点5、x1或x3【解析】【分析】利用函数

    17、图象与不等式的关系可以求得不等式的解集.【详解】数形结合知,二次函数比一次函数高的部分是x1或x3.【考点】利用一次函数图象和二次函数图象性质数形结合解不等式:形如式不等式,构造函数=,如果,找出比,高的部分对应的x的值,找出比,低的部分对应的x的值.三、解答题1、 (1)(2)A(-2,0),B(4,0),C(0,4)(3)-2x4(4)1【解析】【分析】(1)利用配方法先提出二次项系数,在加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式;(2)令y=0,解得x的值,可得出函数图象与x轴的交点坐标,令x=0,解得y的值,可得出函数图象与y轴的交点坐标(3)根据函数的开口方向,与

    18、x轴的交点坐标结合图象可得;(4)根据二次函的性质即可求得(1)解:=;(2)令y=0,则,解得:x=-2或x=4,函数图象与x轴的交点坐标为A(-2,0)和B(4,0),令x=0,则y=4,函数图象与y轴的交点坐标为C(0,4);(3)中,函数图象开口向下,函数图象与x轴交于A(-2,0)和B(4,0),当y0时,x的取值范围是-2x4;(4),函数图象开口向下,对称轴为直线x=1,当x1时,y随x的增大而减小【考点】本题主要考查抛物线与坐标轴的交点,二次函数的性质,等知识点,掌握二次函数的顶点式y=a(x-h)2+k的性质和数形结合思想是解题的关键2、 (1)(2)价格为21元时,才能使每

    19、月获得最大利润,最大利润为3630元【解析】【分析】(1)设,把,和,代入求出k、b的值,从而得出答案;(2)根据总利润=每件利润每月销售量列出函数解析式,配方成顶点式,利用二次函数的性质求解可得答案(1)解:设,把,和,代入可得,解得,则;(2)解:每月获得利润 ,当时,P有最大值,最大值为3630答:当价格为21元时,才能使每月获得最大利润,最大利润为3630元【考点】本题主要考查了一次函数解析式的求法和二次函数的应用,解题的关键是理解题意找到其中蕴含的相等关系,并据此得出函数解析式及二次函数的性质,然后再利用二次函数求最值3、 (1)见解析(2)(3)的值为1或-5【解析】【分析】()计

    20、算判别式的值,得到,即可判定;()计算二次函数的对称轴为:直线,利用当抛物线开口向上时,谁离对称轴远谁大判断即可;()先得到抛物线沿y轴翻折后的函数关系式,再利用对称轴与取值范围的位置分类讨论即可(1)证明:令,则不论为何实数,方程有两个不相等的实数根无论为何实数,该二次函数的图象与轴总有两个公共点(2)解:二次函数的对称轴为:直线,抛物线开口向上抛物线上的点离对称轴越远对应的函数值越大点到对称轴的距离为:1点到对称轴的距离为:2(3)解:抛物线沿轴翻折后的函数解析式为该抛物线的对称轴为直线若,即,则当时,有最小值解得,若,即,则当时,有最小值-1不合题意,舍去若,则当时,有最小值解得,综上,

    21、的值为1或-5【考点】本题考查了抛物线与x轴的交点以及二次函数的最值问题,利用一元二次方程根的判别式判断抛物线与x轴的交点情况;熟练掌握二次函数的最值情况、根据对称轴与取值范围的位置关系来确定二次函数的最值是解本题的关键4、 (1) a=-1;坐标为,;(2).【解析】【分析】(1)利用抛物线的对称轴方程得到x=-=-1,解方程求出a即可得到抛物线的解析式为y=-x2-2x;然后解方程-x2-2x=0可得到抛物线与x轴的交点坐标;(2)抛物线y=-x2-2x+m由抛物线y=-x2-2x上下平移|m|和单位得到,利用函数图象可得到当x=1时,y0,即-1-2+m0;当x=-1时,y0,即-1+2

    22、+m0,然后解两个不等式求出它们的公共部分可得到m的范围【详解】根据题意得,解得,所以抛物线的解析式为,当时,解得,所以抛物线与轴的交点坐标为,;抛物线抛物线由抛物线上下平移和单位得到,而抛物线的对称轴为直线,抛物线与轴的交点都在点,之间,当时,即,解得;当时,即,解得,的取值范围为【考点】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次函数图象的几何变换5、(1); (2)第6天时,该企业利润最大,为12800元.(3)7天【解析】【分析】(1)根据题意确定一次函数的解析式,实际问题中x的取值

    23、范围要使实际问题有意义;(2)求出当天利润与天数的函数解析式,确定其最大值即可;(3)根据(2)中的函数解析式列出不等式方程即可解答【详解】(1)根据题意,得y与x的解析式为:()(2)设当天的当天的销售利润为w元,则根据题意,得当1x6时,w=(1200-800)(2x+20)=800x+8000,8000,w随x的增大而增大,当x=6时,w最大值=8006+8000=12800当6x12时,易得m与x的关系式:m=50x+500w=1200-(50x+500)(2x+20)=-100x2+400x+14000=-100(x-2)2+14400此时图象开口向下,在对称轴右侧,w随x的增大而减小,天数x为整数,当x=7时,w有最大值,为11900元,1280011900,当x=6时,w最大,且w最大值=12800元,答:该厂第6天获得的利润最大,最大利润是12800元(3)由(2)可得,1x6时, 解得:x3.5则第1-3天当天利润低于10800元,当6x12时,解得x-4(舍去)或x8则第9-12天当天利润低于10800元,故当天销售利润低于10800元的天数有7天【考点】本题主要考查一次函数和二次函数的应用,解题关键在于理解题意,利用待定系数法确定函数的解析式,并分类讨论

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年人教版九年级数学上册第二十二章二次函数同步训练试卷(附答案详解).docx
    链接地址:https://www.ketangku.com/wenku/file-695867.html
    相关资源 更多
  • 专题1.13 有理数章末九大题型总结(培优篇)(沪科版)(解析版).docx专题1.13 有理数章末九大题型总结(培优篇)(沪科版)(解析版).docx
  • 专题1.13 有理数章末九大题型总结(培优篇)(沪科版)(原卷版).docx专题1.13 有理数章末九大题型总结(培优篇)(沪科版)(原卷版).docx
  • 专题1.13 平行线中的最值问题(分层练习)(综合练)-2023-2024学年七年级数学下册全章复习与专题突破讲与练(浙教版).docx专题1.13 平行线中的最值问题(分层练习)(综合练)-2023-2024学年七年级数学下册全章复习与专题突破讲与练(浙教版).docx
  • 专题1.13 平方差公式(分层练习)(基础练)-2023-2024学年七年级数学下册基础知识专项突破讲与练(北师大版).docx专题1.13 平方差公式(分层练习)(基础练)-2023-2024学年七年级数学下册基础知识专项突破讲与练(北师大版).docx
  • 专题1.13 二次根式(全章复习与巩固)(培优篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx专题1.13 二次根式(全章复习与巩固)(培优篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx
  • 专题1.13 二次函数y=ax² bx c(a≠0)的图象与性质(知识讲解)-2022-2023学年九年级数学上册基础知识专项讲练(浙教版).docx专题1.13 二次函数y=ax² bx c(a≠0)的图象与性质(知识讲解)-2022-2023学年九年级数学上册基础知识专项讲练(浙教版).docx
  • 专题1.12 相反数(巩固篇)(专项练习)-2022-2023学年七年级数学上册基础知识专项讲练(人教版).docx专题1.12 相反数(巩固篇)(专项练习)-2022-2023学年七年级数学上册基础知识专项讲练(人教版).docx
  • 专题1.12 正方形的性质与判定(拓展篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx专题1.12 正方形的性质与判定(拓展篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx
  • 专题1.12 有理数章末拔尖卷(沪科版)(原卷版).docx专题1.12 有理数章末拔尖卷(沪科版)(原卷版).docx
  • 专题1.12 平行线中的旋转问题(分层练习)(培优练)-2023-2024学年七年级数学下册全章复习与专题突破讲与练(浙教版).docx专题1.12 平行线中的旋转问题(分层练习)(培优练)-2023-2024学年七年级数学下册全章复习与专题突破讲与练(浙教版).docx
  • 专题1.12 二次根式(全章复习与巩固)(巩固篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx专题1.12 二次根式(全章复习与巩固)(巩固篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx
  • 专题1.11 线段垂直平分线(直通中考)(综合练)-2023-2024学年八年级数学下册基础知识专项突破讲与练(北师大版).docx专题1.11 线段垂直平分线(直通中考)(综合练)-2023-2024学年八年级数学下册基础知识专项突破讲与练(北师大版).docx
  • 专题1.11 正方形的性质与判定(巩固篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx专题1.11 正方形的性质与判定(巩固篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx
  • 专题1.11 有理数中规律和新定义综合应用的六大题型(沪科版)(解析版).docx专题1.11 有理数中规律和新定义综合应用的六大题型(沪科版)(解析版).docx
  • 专题1.11 整式的乘法(常考知识点分类专题)-2023-2024学年七年级数学下册基础知识专项突破讲与练(北师大版).docx专题1.11 整式的乘法(常考知识点分类专题)-2023-2024学年七年级数学下册基础知识专项突破讲与练(北师大版).docx
  • 专题1.11 探索三角形全等的条件(HL)(分层练习)-2023-2024学年八年级数学上册基础知识专项突破讲与练(苏科版).docx专题1.11 探索三角形全等的条件(HL)(分层练习)-2023-2024学年八年级数学上册基础知识专项突破讲与练(苏科版).docx
  • 专题1.11 平行线中的旋转问题(分层练习)(综合练)-2023-2024学年七年级数学下册全章复习与专题突破讲与练(浙教版).docx专题1.11 平行线中的旋转问题(分层练习)(综合练)-2023-2024学年七年级数学下册全章复习与专题突破讲与练(浙教版).docx
  • 专题1.11 利用三角函数测高(专项练习).docx专题1.11 利用三角函数测高(专项练习).docx
  • 专题1.11 二次根式(全章复习与巩固)(基础篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx专题1.11 二次根式(全章复习与巩固)(基础篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx
  • 专题1.11 二次函数y=a(x-h)² k(a≠0)的图象与性质(基础篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(浙教版).docx专题1.11 二次函数y=a(x-h)² k(a≠0)的图象与性质(基础篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(浙教版).docx
  • 专题1.10 相反数(知识讲解)-2022-2023学年七年级数学上册基础知识专项讲练(人教版).docx专题1.10 相反数(知识讲解)-2022-2023学年七年级数学上册基础知识专项讲练(人教版).docx
  • 专题1.10 正方形的性质与判定(基础篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx专题1.10 正方形的性质与判定(基础篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx
  • 专题1.10 有理数(分类讨论问题)(培优练)-2023-2024学年七年级数学上册全章复习与专题突破讲与练(浙教版).docx专题1.10 有理数(分类讨论问题)(培优练)-2023-2024学年七年级数学上册全章复习与专题突破讲与练(浙教版).docx
  • 专题1.10 探索三角形全等的条件(HL)(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册基础知识专项突破讲与练(苏科版).docx专题1.10 探索三角形全等的条件(HL)(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册基础知识专项突破讲与练(苏科版).docx
  • 专题1.10 平行线中的折叠问题(分层练习)(提升练)-2023-2024学年七年级数学下册全章复习与专题突破讲与练(浙教版).docx专题1.10 平行线中的折叠问题(分层练习)(提升练)-2023-2024学年七年级数学下册全章复习与专题突破讲与练(浙教版).docx
  • 专题1.10 二次函数y=a(x-h)² k(a≠0)的图象与性质(知识讲解)-2022-2023学年九年级数学上册基础知识专项讲练(浙教版).docx专题1.10 二次函数y=a(x-h)² k(a≠0)的图象与性质(知识讲解)-2022-2023学年九年级数学上册基础知识专项讲练(浙教版).docx
  • 专题1.1.2 名词(冲击双一流·单句语法填空60题 原创语法填空1篇) .docx专题1.1.2 名词(冲击双一流·单句语法填空60题 原创语法填空1篇) .docx
  • 专题1.1.1 名词(冲击双一流·单句语法填空60题 原创名词语篇填空1篇) .docx专题1.1.1 名词(冲击双一流·单句语法填空60题 原创名词语篇填空1篇) .docx
  • 专题1.1 集合(原卷版).docx专题1.1 集合(原卷版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1