分享
分享赚钱 收藏 举报 版权申诉 / 12

类型2022年高考数学一轮复习 考点规范练39 空间几何体的表面积与体积(含解析)新人教A版.docx

  • 上传人:a****
  • 文档编号:717123
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:12
  • 大小:328.93KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年高考数学一轮复习 考点规范练39 空间几何体的表面积与体积含解析新人教A版 2022 年高 数学 一轮 复习 考点 规范 39 空间 几何体 表面积 体积 解析 新人
    资源描述:

    1、考点规范练39空间几何体的表面积与体积基础巩固1.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20,则r=()A.1B.2C.4D.8答案:B解析:由条件及几何体的三视图可知该几何体是由一个圆柱被过圆柱底面直径的平面所截剩下的半个圆柱及一个半球拼接而成的.其表面积由一个矩形的面积、两个半圆的面积、圆柱的侧面积的一半及一个球的表面积的一半组成.故S表=2r2r+212r2+r2r+124r2=5r2+4r2=16+20,解得r=2.2.已知某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是

    2、()A.2B.4C.6D.8答案:C解析:由三视图可知该几何体为直四棱柱.S底=12(1+2)2=3,h=2,V=Sh=32=6.3.已知A,B,C为球O的球面上的三个点,O1为ABC的外接圆.若O1的面积为4,AB=BC=AC=OO1,则球O的表面积为()A.64B.48C.36D.32答案:A解析:由题意知O1的半径r=2.由正弦定理知ABsinC=2r,OO1=AB=2rsin60=23,球O的半径R=r2+|OO1|2=4.球O的表面积为4R2=64.4.某几何体的三视图如图所示,其中正视图由矩形和等腰直角三角形组成,侧视图由半圆和等腰直角三角形组成,俯视图的实线部分为正方形,则该几何

    3、体的表面积为()A.3+42B.4(+2+1)C.4(+2)D.4(+1)答案:A解析:由三视图知几何体的上半部分是半圆柱,圆柱的底面半径为1,高为2,其表面积为S1=1222+12=3,下半部分为正四棱锥,底面棱长为2,斜高为2,其表面积S2=41222=42,所以该几何体的表面积为S=S1+S2=3+42.5.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A.323B.4C.2D.43答案:D解析:因为该正四棱柱的外接球的半径是四棱柱体对角线的一半,所以半径r=1212+12+(2)2=1,所以V球=4313=43.故选D.6.九章算术是我国古代内容极为

    4、丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有()(注:尺、斛均为非国际通用单位)A.14斛B.22斛C.36斛D.66斛答案:B解析:设底面圆半径为R,米堆高为h.米堆底部弧长为8尺,142R=8,R=16.体积V=1413R2h=1121625.3,V3209(立方尺).堆放的米约有32091.6222(斛).7.(2021全国,理11)已知A,

    5、B,C是半径为1的球O的球面上的三个点,且ACBC,AC=BC=1,则三棱锥O-ABC的体积为()A.212B.312C.24D.34答案:A解析:如图,设O1为AB的中点,连接CO1,OO1,因为ACBC,AC=BC=1,所以CO1=22,由题意可知OO1平面ABC,在RtOO1C中,OO1=OC2-CO12=22,则三棱锥O-ABC的体积为13121122=212.8.学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD-A1B1C1D1挖去四棱锥O-EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6 cm,AA1=4 cm

    6、.3D打印所用原料密度为0.9 g/cm3.不考虑打印损耗,制作该模型所需原料的质量为g.答案:118.8解析:由题意得,四棱锥O-EFGH的底面积为46-41223=12(cm2),点O到平面BB1C1C的距离为3cm,则此四棱锥的体积为V1=13123=12(cm3).又长方体ABCD-A1B1C1D1的体积为V2=466=144(cm3),则该模型的体积为V=V2-V1=144-12=132(cm3).故其质量为0.9132=118.8(g).9.已知棱长为4的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,则该几何体的体积是.答案:32解析:由三视图,可得棱长为4的正方体

    7、被平面AJGI截成两个几何体,且J,I分别为BF,DH的中点,如图,两个几何体的体积各占正方体的一半,则该几何体的体积是1243=32.10.在三棱柱ABC-A1B1C1中,BAC=90,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M,N,P分别是棱AB,BC,B1C1的中点,则三棱锥P-A1MN的体积是.答案:124解析:由题意,可得直三棱柱ABC-A1B1C1,如图所示.其中AB=AC=AA1=BB1=CC1=A1B1=A1C1=1.M,N,P分别是棱AB,BC,B1C1的中点,MN=12,NP=1.SMNP=12121=14.点A1到平面MNP的距离

    8、为AM=12,VP-A1MN=VA1-MNP=131412=124.11.已知边长为2的等边三角形ABC的三个顶点A,B,C都在以O为球心的球面上,若球O的表面积为1483,则三棱锥O-ABC的体积为.答案:333解析:设球的半径为R,则4R2=1483,解得R2=373.设ABC所在平面截球所得的小圆的半径为r,则r=23322=233.故球心到ABC所在平面的距离为d=R2-r2=373-43=11,即为三棱锥O-ABC的高,所以VO-ABC=13SABCd=13342211=333.12.一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为3、宽为1的矩形,俯

    9、视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的表面积S.解:(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为3,所以V=113=3.(2)由三视图可知,在该平行六面体中,A1D平面ABCD,CD平面BCC1B1,所以AA1=2,侧面ABB1A1,CDD1C1均为矩形.S=2(11+13+12)=6+23.能力提升13.如图,在多面体ABCDEF中,已知四边形ABCD是边长为1的正方形,且ADE,BCF均为正三角形,EFAB,EF=2,则该多面体的体积为()A.23B.33C.43D.32答案:A解析:如图,分别过点A,B作

    10、EF的垂线,垂足分别为G,H,连接DG,CH,容易求得EG=HF=12,AG=GD=BH=HC=32,所以SAGD=SBHC=12221=24.所以V=VE-ADG+VF-BHC+VAGD-BHC=2VE-ADG+VAGD-BHC=1324122+241=23.14.刍薨(chuhong),中国古代算术中的一种几何形体,九章算术中记载“刍薨者,下有褒有广,而上有褒无广.刍,草也.薨,屋盖也.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱,刍薨字面意思为茅草屋顶”.一刍薨的三视图如图所示,其中正视图为等腰梯形,侧视图为等腰三角形,若用茅草搭建它,则覆盖的面积至少为()A.65B.75C.

    11、85D.95答案:C解析:茅草覆盖面积即为几何体的侧面积.由题意可知,该几何体的侧面为两个全等的等腰梯形和两个全等的等腰三角形.其中,等腰梯形的上底长为2,下底长为4,高为22+12=5;等腰三角形的底边长为2,高为22+12=5.故侧面积为S=212(2+4)5+21225=85.即需要茅草覆盖面积至少为85,故选C.15.已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,ABC是边长为2的正三角形,E,F分别是PA,AB的中点,CEF=90,则球O的体积为()A.86B.46C.26D.6答案:D解析:设PA=PB=PC=2x.E,F分别为PA,AB的中点,EFPB,且EF=

    12、12PB=x.ABC为边长为2的等边三角形,CF=3.又CEF=90,CE=3-x2,AE=12PA=x.在AEC中,由余弦定理可知cosEAC=x2+4-(3-x2)22x.如图,作PDAC于点D,D为AC的中点,cosEAC=ADPA=12x.x2+4-3+x24x=12x.2x2+1=2.x2=12,即x=22.PA=PB=PC=2.又AB=BC=AC=2,PAPBPC.2R=2+2+2=6.R=62.V=43R3=43668=6.故选D.16.如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O上的点,DBC,ECA,FAB分别是以BC,CA

    13、,AB为底边的等腰三角形,沿虚线剪开后,分别以BC,CA,AB为折痕折起DBC,ECA,FAB,使得D,E,F重合,得到三棱锥.当ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.答案:415解析:如图所示,连接OD,交BC于点G.由题意知ODBC,OG=36BC.设OG=x,则BC=23x,DG=5-x,三棱锥的高h=DG2-OG2=25-10x+x2-x2=25-10x.因为SABC=1223x3x=33x2,所以三棱锥的体积V=13SABCh=3x225-10x=325x4-10x5.令f(x)=25x4-10x5,x0,52,则f(x)=100x3-50x4.令f(x)=0

    14、,可得x=2,则f(x)在区间(0,2)内单调递增,在区间2,52内单调递减,所以f(x)max=f(2)=80.所以V380=415,所以三棱锥体积的最大值为415.17.如图,在长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面把该长方体分成的两部分体积的比值.解:(1)交线围成的正方形EHGF如图.(2)作EMAB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EHGF为正方

    15、形,所以EH=EF=BC=10.于是MH=EH2-EM2=6,AH=10,HB=6.因为长方体被平面分成两个高为10的直棱柱,所以其体积的比值为两棱柱底面积之比,即9779也正确.高考预测18.已知球的直径SC=4,A,B是该球球面上的两点,AB=3,ASC=BSC=30,则棱锥S-ABC的体积为()A.33B.23C.3D.1答案:C解析:如图,过点A作AD垂直SC于点D,连接BD.因为SC是球的直径,所以SAC=SBC=90.又ASC=BSC=30,又SC为公共边,所以SACSBC.因为ADSC,所以BDSC.由此得SC平面ABD.所以VS-ABC=VS-ABD+VC-ABD=13SABDSC.因为在RtSAC中,ASC=30,SC=4,所以AC=2,SA=23.所以AD=SACASC=3.同理在RtBSC中也有BD=SBCBSC=3.又AB=3,所以ABD为正三角形.所以VS-ABC=13SABDSC=1312(3)2sin604=3,故选C.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年高考数学一轮复习 考点规范练39 空间几何体的表面积与体积(含解析)新人教A版.docx
    链接地址:https://www.ketangku.com/wenku/file-717123.html
    相关资源 更多
  • 专题27 函数单调性含参问题的研究(教师版).docx专题27 函数单调性含参问题的研究(教师版).docx
  • 专题27 函数单调性含参问题的研究(学生版).docx专题27 函数单调性含参问题的研究(学生版).docx
  • 专题27 倍长中线模型(解析版).docx专题27 倍长中线模型(解析版).docx
  • 专题27 倍长中线模型(原卷版).docx专题27 倍长中线模型(原卷版).docx
  • 专题27 以图形为背景的两角差的正切-2022年高考数学优拔尖必刷压轴题(选择题、填空题)(新高考地区专用).docx专题27 以图形为背景的两角差的正切-2022年高考数学优拔尖必刷压轴题(选择题、填空题)(新高考地区专用).docx
  • 专题27 以图形为背景的两角和与差的正切-2023年高考数学优拔尖核心压轴题(选择、填空题)(新高考地区专用).docx专题27 以图形为背景的两角和与差的正切-2023年高考数学优拔尖核心压轴题(选择、填空题)(新高考地区专用).docx
  • 专题27 二次函数与平行四边形存在问题-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版).docx专题27 二次函数与平行四边形存在问题-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版).docx
  • 专题27 二次函数与平行四边形存在问题-2022年中考数学之二次函数重点题型专题(全国通用版)(原卷版) .docx专题27 二次函数与平行四边形存在问题-2022年中考数学之二次函数重点题型专题(全国通用版)(原卷版) .docx
  • 专题27 不等式组-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(解析版).docx专题27 不等式组-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(解析版).docx
  • 专题27 不等式组-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(原卷版).docx专题27 不等式组-2022-2023学年初中数学学科素养能力培优竞赛试题精选专练(原卷版).docx
  • 专题27 三角形的内切圆(提优)-冲刺2021年中考几何专项复习(解析版).docx专题27 三角形的内切圆(提优)-冲刺2021年中考几何专项复习(解析版).docx
  • 专题27 三角形的内切圆(提优)-冲刺2021年中考几何专项复习(原卷版).docx专题27 三角形的内切圆(提优)-冲刺2021年中考几何专项复习(原卷版).docx
  • 专题27 三角形的内切圆(基础)-冲刺2021年中考几何专项复习(解析版).docx专题27 三角形的内切圆(基础)-冲刺2021年中考几何专项复习(解析版).docx
  • 专题27 8BU3-2023年牛津译林版初中英语单元知识点一遍过(江苏专用).docx专题27 8BU3-2023年牛津译林版初中英语单元知识点一遍过(江苏专用).docx
  • 专题27直线与圆的位置关系-【中职专用】中职高考数学二轮复习专项突破.docx专题27直线与圆的位置关系-【中职专用】中职高考数学二轮复习专项突破.docx
  • 专题27 法拉第电磁感应定律(解析版).docx专题27 法拉第电磁感应定律(解析版).docx
  • 专题27 法拉第电磁感应定律(原卷版).docx专题27 法拉第电磁感应定律(原卷版).docx
  • 专题26数据的收集与整理-2021年中考数学真题分项汇编(解析版)【全国通用】(第02期).docx专题26数据的收集与整理-2021年中考数学真题分项汇编(解析版)【全国通用】(第02期).docx
  • 专题26数据的收集与整理-2021年中考数学真题分项汇编(原卷版)【全国通用】(第02期).docx专题26数据的收集与整理-2021年中考数学真题分项汇编(原卷版)【全国通用】(第02期).docx
  • 专题26平面几何B辑(教师版含解析)备战2021年高中数学联赛之1981-2020年高中数学联赛二试试题分专题训练.docx专题26平面几何B辑(教师版含解析)备战2021年高中数学联赛之1981-2020年高中数学联赛二试试题分专题训练.docx
  • 专题26平面几何B辑(学生版)备战2021年高中数学联赛之1981-2020年高中数学联赛二试试题分专题训练.docx专题26平面几何B辑(学生版)备战2021年高中数学联赛之1981-2020年高中数学联赛二试试题分专题训练.docx
  • 专题26圆周运动.docx专题26圆周运动.docx
  • 专题26以旋转为载体的几何综合问题 -挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(解析版).docx专题26以旋转为载体的几何综合问题 -挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(解析版).docx
  • 专题26以旋转为载体的几何综合问题 -挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx专题26以旋转为载体的几何综合问题 -挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx
  • 专题26二次函数与线段周长压轴问题-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(原卷版).docx专题26二次函数与线段周长压轴问题-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(原卷版).docx
  • 专题26 数据的分析.docx专题26 数据的分析.docx
  • 专题26.9 反比例函数与面积问题(巩固篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(人教版).docx专题26.9 反比例函数与面积问题(巩固篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(人教版).docx
  • 专题26.8 反比例函数与面积问题(基础篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(人教版).docx专题26.8 反比例函数与面积问题(基础篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(人教版).docx
  • 专题26.7 反比例函数(全章直通中考)(培优练)-2023-2024学年九年级数学下册全章复习与专题突破讲与练(人教版).docx专题26.7 反比例函数(全章直通中考)(培优练)-2023-2024学年九年级数学下册全章复习与专题突破讲与练(人教版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1