分享
分享赚钱 收藏 举报 版权申诉 / 5

类型2022年高考数学一轮复习 考点规范练56 坐标系与参数方程(含解析)新人教A版.docx

  • 上传人:a****
  • 文档编号:717278
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:5
  • 大小:27.74KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年高考数学一轮复习 考点规范练56 坐标系与参数方程含解析新人教A版 2022 年高 数学 一轮 复习 考点 规范 56 坐标系 参数 方程 解析 新人
    资源描述:

    1、考点规范练56坐标系与参数方程基础巩固1.在平面直角坐标系xOy中,已知直线l的参数方程为x=1+12t,y=32t(t为参数),椭圆C的参数方程为x=cos,y=2sin(为参数).设直线l与椭圆C相交于A,B两点,求线段AB的长.解:椭圆C的普通方程为x2+y24=1.将直线l的参数方程x=1+12t,y=32t(t为参数)代入x2+y24=1,得1+12t2+32t24=1,即7t2+16t=0,解得t1=0,t2=-167.所以AB=|t1-t2|=167.2.在直角坐标系xOy中,曲线C1的参数方程为x=coskt,y=sinkt(t为参数).以坐标原点为极点,x轴正半轴为极轴建立极

    2、坐标系,曲线C2的极坐标方程为4cos -16sin +3=0.(1)当k=1时,C1是什么曲线?(2)当k=4时,求C1与C2的公共点的直角坐标.解:(1)当k=1时,C1:x=cost,y=sint,消去参数t得x2+y2=1,故曲线C1是圆心为坐标原点,半径为1的圆.(2)当k=4时,C1:x=cos4t,y=sin4t,消去参数t得C1的直角坐标方程为x+y=1.C2的直角坐标方程为4x-16y+3=0.由x+y=1,4x-16y+3=0解得x=14,y=14.故C1与C2的公共点的直角坐标为14,14.3.在平面直角坐标系xOy中,曲线C1的参数方程为x=cos,y=1+sin(为参

    3、数,R),在以坐标原点为极点,x轴非负半轴为极轴的极坐标系中,曲线C2:sin-4=2.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)若曲线C1和曲线C2相交于A,B两点,求|AB|的值.解:(1)由x=cos,y=1+sinx=cos,y-1=sinx2+(y-1)2=1,由sin-4=222sin-22cos=2y-x=2,即C2:x-y+2=0.(2)直线x-y+2=0与圆x2+(y-1)2=1相交于A,B两点,又x2+(y-1)2=1的圆心(0,1),半径为1,圆心到直线的距离d=|0-1+2|12+(-1)2=22,|AB|=212-222=2.4.在直角坐标系xOy中,

    4、曲线C的参数方程为x=2-t-t2,y=2-3t+t2(t为参数且t1),C与坐标轴交于A,B两点.(1)求|AB|;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求直线AB的极坐标方程.解:(1)因为t1,由2-t-t2=0得t=-2,所以C与y轴的交点为(0,12);由2-3t+t2=0得t=2,所以C与x轴的交点为(-4,0).故|AB|=410.(2)由(1)可知,直线AB的直角坐标方程为x-4+y12=1,将x=cos,y=sin代入,得直线AB的极坐标方程为3cos-sin+12=0.5.在平面直角坐标系xOy中,曲线C1的参数方程为x=4t2,y=4t(t为参数).在以坐

    5、标原点O为极点,x轴正半轴为极轴建立的极坐标系中,曲线C2的极坐标方程为cos+4=22.(1)把曲线C1的参数方程化为普通方程,C2的极坐标方程化为直角坐标方程;(2)若曲线C1,C2相交于A,B两点,AB的中点为P,过点P作曲线C2的垂线交曲线C1于E,F两点,求|PE|PF|的值.解:(1)消去参数可得C1:y2=4x,C2:x-y-1=0.(2)设A(x1,y1),B(x2,y2),且AB的中点为P(x0,y0),联立y2=4x,x-y-1=0可得x2-6x+1=0.x1+x2=6,x1x2=1,x0=x1+x22=3,y0=2.AB中垂线的参数方程为x=3-22t,y=2+22t(t

    6、为参数).y2=4x.将代入中,得t2+82t-16=0,t1t2=-16.|PE|PF|=|t1t2|=16.能力提升6.在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为2+2cos -3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.解:(1)由x=cos,y=sin得C2的直角坐标方程为(x+1)2+y2=4.(2)由(1)知C2是圆心为A(-1,0),半径为2的圆.由题设知,C1是过点B(0,2)且关于y轴对称的两条射线.记y轴右边的射线为l1,y轴左边的射线为l2,由于

    7、B在圆C2的外面,故C1与C2有且仅有三个公共点等价于l1与C2只有一个公共点且l2与C2有两个公共点,或l2与C2只有一个公共点且l1与C2有两个公共点.当l1与C2只有一个公共点时,A到l1所在直线的距离为2,所以|-k+2|k2+1=2,故k=-43或k=0.经检验,当k=0时,l1与C2没有公共点;当k=-43时,l1与C2只有一个公共点,l2与C2有两个公共点.当l2与C2只有一个公共点时,A到l2所在直线的距离为2,所以|k+2|k2+1=2,故k=0或k=43,经检验,当k=0时,l1与C2没有公共点;当k=43时,l2与C2没有公共点.综上,所求C1的方程为y=-43|x|+2

    8、.7.已知直线C1:x=1+tcos,y=tsin(t为参数),圆C2:x=cos,y=sin(为参数).(1)当=3时,求C1被C2截得的线段的长;(2)过坐标原点O作C1的垂线,垂足为A,当变化时,求点A轨迹的参数方程,并指出它是什么曲线.解:(1)当=3时,C1的普通方程为y=3(x-1),C2的普通方程为x2+y2=1.联立方程组y=3(x-1),x2+y2=1,解得C1与C2的交点坐标为(1,0)与12,-32.故C1被C2截得的线段的长为1-122+0+322=1.(2)将C1的参数方程代入C2的普通方程得t2+2tcos=0,设直线C1与圆C2交于M,N两点,M,N两点对应的参数

    9、分别为t1,t2,则点A对应的参数t=t1+t22=-cos,故点A的坐标为(sin2,-cossin).故当变化时,点A轨迹的参数方程为x=sin2,y=-sincos(为参数).因此,点A轨迹的普通方程为x-122+y2=14.故点A的轨迹是以12,0为圆心,半径为12的圆.高考预测8.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为sin2=acos (a0),过点P(-2,-4)的直线l的参数方程为x=-2+22t,y=-4+22t(t为参数),直线l与曲线C相交于A,B两点.(1)写出曲线C的直角坐标方程和直线l的普通方程;(2)若|PA|PB|=|AB|2,求a的值.解:(1)sin2=acos(a0),2sin2=acos(a0),即y2=ax(a0).直线l的参数方程消去参数t,得普通方程为y=x-2.(2)将直线l的参数方程代入曲线C的直角坐标方程y2=ax(a0)中,得t2-2(a+8)t+4(a+8)=0,设A,B两点对应的参数分别为t1,t2,则t1+t2=2(a+8),t1t2=4(a+8).|PA|PB|=|AB|2,t1t2=(t1-t2)2.(t1+t2)2=(t1-t2)2+4t1t2=5t1t2,即2(8+a)2=20(8+a),解得a=2或a=-8(不合题意,应舍去),a的值为2.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年高考数学一轮复习 考点规范练56 坐标系与参数方程(含解析)新人教A版.docx
    链接地址:https://www.ketangku.com/wenku/file-717278.html
    相关资源 更多
  • 专题11 阅读理解25篇(名校最新期末真题)-2021-2022学年八年级英语下学期期末复习查缺补漏冲刺满分(外研版).docx专题11 阅读理解25篇(名校最新期末真题)-2021-2022学年八年级英语下学期期末复习查缺补漏冲刺满分(外研版).docx
  • 专题11 阅读理解-应用文26篇 (解析版).docx专题11 阅读理解-应用文26篇 (解析版).docx
  • 专题11 阅读理解-应用文26篇 (原卷版).docx专题11 阅读理解-应用文26篇 (原卷版).docx
  • 专题11 阅读填表精练精析15篇(期中真题 名校模拟)-2022-2023学年九年级英语上学期期中考点大串讲(牛津译林版).docx专题11 阅读填表精练精析15篇(期中真题 名校模拟)-2022-2023学年九年级英语上学期期中考点大串讲(牛津译林版).docx
  • 专题11 阅读填表10篇-2023届九年级英语名校真题分类汇编(江苏专用).docx专题11 阅读填表10篇-2023届九年级英语名校真题分类汇编(江苏专用).docx
  • 专题11 阅读填表-冲刺2022年中考英语必考题型终极押题(无锡专用).docx专题11 阅读填表-冲刺2022年中考英语必考题型终极押题(无锡专用).docx
  • 专题11 阅读填表(期末真题 名校模拟)精练精析15篇-2022-2023学年九年级英语上学期期末复习查缺补漏冲刺满分(牛津译林版).docx专题11 阅读填表(期末真题 名校模拟)精练精析15篇-2022-2023学年九年级英语上学期期末复习查缺补漏冲刺满分(牛津译林版).docx
  • 专题11 阅读与书籍-备战2022中考英语语法填空热点话题 体裁分类训练(中考模拟题 名校真题).docx专题11 阅读与书籍-备战2022中考英语语法填空热点话题 体裁分类训练(中考模拟题 名校真题).docx
  • 专题11 闲暇活动-备战2022高考英语阅读七选五热点话题 体裁分类训练(高考模拟 名校真题).docx专题11 闲暇活动-备战2022高考英语阅读七选五热点话题 体裁分类训练(高考模拟 名校真题).docx
  • 专题11 问鼎中考状语从句在手-【口袋书】2022年中考英语背诵手册(牛津译林版).docx专题11 问鼎中考状语从句在手-【口袋书】2022年中考英语背诵手册(牛津译林版).docx
  • 专题11 透过语境巧记高考英语3500词.docx专题11 透过语境巧记高考英语3500词.docx
  • 专题11 选词填空-2022年江苏中考英语热点题型考前押题.docx专题11 选词填空-2022年江苏中考英语热点题型考前押题.docx
  • 专题11 辞赋第十一-2023年八年级寒假新名著《经典常谈》阅读 练习.docx专题11 辞赋第十一-2023年八年级寒假新名著《经典常谈》阅读 练习.docx
  • 专题11 轴对称与旋转变换(题型归纳)(解析版).docx专题11 轴对称与旋转变换(题型归纳)(解析版).docx
  • 专题11 轴对称与旋转变换(题型归纳)(原卷版).docx专题11 轴对称与旋转变换(题型归纳)(原卷版).docx
  • 专题11 语法选择精练精析15篇(期末真题 名校模拟)-2022-2023学年七年级英语下学期期末复习查缺补漏冲刺满分(人教版).docx专题11 语法选择精练精析15篇(期末真题 名校模拟)-2022-2023学年七年级英语下学期期末复习查缺补漏冲刺满分(人教版).docx
  • 专题11 语法填空精练精析20篇(期末真题 名校模拟)-2022-2023学年八年级英语下学期期末复习查缺补漏冲刺满分(外研版).docx专题11 语法填空精练精析20篇(期末真题 名校模拟)-2022-2023学年八年级英语下学期期末复习查缺补漏冲刺满分(外研版).docx
  • 专题11 语法填空之主谓一致100题-备战2023高考英语语法填空专项分类训练.docx专题11 语法填空之主谓一致100题-备战2023高考英语语法填空专项分类训练.docx
  • 专题11 词汇替换句式应用及高考应用文练习-备战2022年高考英语书面表达应用文满分攻略.docx专题11 词汇替换句式应用及高考应用文练习-备战2022年高考英语书面表达应用文满分攻略.docx
  • 专题11 设元的技巧_答案.docx专题11 设元的技巧_答案.docx
  • 专题11 记叙文文体知识.docx专题11 记叙文文体知识.docx
  • 专题11 认识化学元素(解析版).docx专题11 认识化学元素(解析版).docx
  • 专题11 被动语态80题(名校最新真题)-2022-2023学年九年级英语上学期期末复习查缺补漏冲刺满分(牛津上海版).docx专题11 被动语态80题(名校最新真题)-2022-2023学年九年级英语上学期期末复习查缺补漏冲刺满分(牛津上海版).docx
  • 专题11 补全对话精练精析20篇-2020-2021学年八年级英语下册期末复习挑战满分系列(人教新目标).docx专题11 补全对话精练精析20篇-2020-2021学年八年级英语下册期末复习挑战满分系列(人教新目标).docx
  • 专题11 统计(教师版).docx专题11 统计(教师版).docx
  • 专题11 统计(学生版).docx专题11 统计(学生版).docx
  • 专题11 细胞的增殖(精练)(原卷版).docx专题11 细胞的增殖(精练)(原卷版).docx
  • 专题11 细胞的增殖(串讲)(解析版).docx专题11 细胞的增殖(串讲)(解析版).docx
  • 专题11 细胞的增殖(串讲)(原卷版).docx专题11 细胞的增殖(串讲)(原卷版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1