分享
分享赚钱 收藏 举报 版权申诉 / 23

类型2022年人教版九年级数学上册第二十五章概率初步定向训练练习题(含答案解析).docx

  • 上传人:a****
  • 文档编号:696071
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:23
  • 大小:821.96KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 年人教版 九年级 数学 上册 第二 十五 概率 初步 定向 训练 练习题 答案 解析
    资源描述:

    1、人教版九年级数学上册第二十五章概率初步定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、老师组织学生做分组摸球实验给每组准备了完全相同的实验材料,一个不透明的袋子,袋子中装有除颜色外都相同的3个黄球

    2、和若干个白球先把袋子中的球搅匀后,从中随意摸出一个球,记下球的颜色再放回,即为一次摸球统计各组实验的结果如下:一组二组三组四组五组六组七组八组九组十组摸球的次数100100100100100100100100100100摸到白球的次数41394043383946414238请你估计袋子中白球的个数是()A1个B2个C3个D4个2、掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是()A1BCD3、在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球两次都摸到黄球的概率是

    3、()A B CD 4、某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是()ABCD5、从2,1,2这三个数中任取两个不同的数相乘,积为正数的概率是()ABCD6、 “翻开华东师大版数学九年级上册,恰好翻到第60页”,这个事件是()A必然事件B随机事件C不可能亊件D确定事件7、在利用正六面体骰子进行频率估计概率的试验中,小颖同学统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是()A朝上的点数是5的概率B朝上的点数是奇数的概率C朝上的点数大于2的概率D朝上的点数是3的倍数的概率8、在一个不透明纸箱中放有除了数字不同外,其

    4、它完全相同2张卡片,分别标有数字1、2,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为()ABCD9、有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A6B16C18D2410、在一个不透明的口袋中装有个白球、个黄球、个红球、个绿球,除颜色其余都相同,小明通过多次摸球实验后发现,摸到某种颜色的球的频率稳定在左右,则小明做实验时所摸到的球的颜色是( )A白色B黄色C红色D绿色第卷(非选择题 70分)二、填空题(5小题,每小题4分,共

    5、计20分)1、某校举行春季运动会,需要在初一年级选取一名志愿者初一(1)班、初一(2)班、初一(3)班各有2名同学报名参加,现从这6名同学中随机选取一名志愿者,则被选中的这名同学恰好是初一(3)班同学的概率是_2、袋子中装有除颜色外完全相同的n个黄色乒乓球和3个白色乒乓球,从中随机抽取1个,若选中白色乒乓球的概率是,则n的值是_3、一个小球在光滑度相同的地板上(如图)自由滚动,并随机地停留在某块方砖上,则它最终停留在黑砖上的概率是_ 4、在实数,3.14,0,中,无理数出现的频率为_5、在一个不透明的袋子中装有6个红球和若干个白球,这些球除颜色外都相同,将球搅匀后随机摸出一个球,记下颜色后放回

    6、,不断重复这一过程,共摸球100次,发现有20次摸到红球,估计袋子中白球的个数约为_三、解答题(5小题,每小题10分,共计50分)1、据德阳县志记载,德阳钟鼓楼始建于明朝成化年间,明末因兵灾焚毁,清乾隆五十二年重建在没有高层建筑的时代,德阳钟鼓楼一直流传着“半截还在云里头”的故事1971年,因破四旧再次遭废现在的钟鼓楼是老钟鼓楼的仿制品,于2005年12月27日破土动工,2007年元旦落成,坐落东山之巅,百尺高楼金碧辉煌,流光溢彩;万丈青壁之间,银光闪烁,蔚为壮观,已经成为人们休闲的打卡胜地学校数学兴趣小组在开展“数学与传承”探究活动中,进行了“钟鼓楼知识知多少”专题调查活动,将调查问题设置为

    7、“非常了解”、“比较了解”、“基本了解”、“不太了解”四类他们随机抽取部分市民进行问卷调查,并将结果绘制成了如下两幅统计图:(1)设本次问卷调查共抽取了名市民,图2中“不太了解”所对应扇形的圆心角是度,分别写出,的值(2)根据以上调查结果,在12000名市民中,估计“非常了解”的人数有多少?(3)为进一步跟踪调查市民对钟鼓楼知识掌握的具体情况,兴趣组准备从附近的3名男士和2名女士中随机抽取2人进行调查,请用列举法(树状图或列表)求恰好抽到一男一女的概率2、为落实国家“双减”政策,立德中学在课后托管时间里开展了“音乐社团、体育社团、文学社团,美术社团”活动该校从全校600名学生中随机抽取了部分学

    8、生进行“你最喜欢哪一种社团活动(每人必选且只选一种)”的问卷调查,根据调查结果,绘制了如图所示的两幅不完整的统计图根据图中信息,解答下列问题(1)参加问卷调查的学生共有_人;(2)条形统计图中m的值为_,扇形统计图中的度数为_;(3)根据调查结果,可估计该校600名学生中最喜欢“音乐社团”的约有_人;(4)现从“文学社团”里表现优秀的甲、乙、丙、丁四名同学中随机选取两名参加演讲比赛,请用列表或画树状图的方法求出恰好选中甲和乙两名同学的概率3、商场在国庆期间举行部分商品优惠促销活动,顾客只能从以下两种方案中选择一种:方案一:购物每满200元减66元;方案二:顾客购物达到200元可抽奖一次具体规则

    9、是:在一个箱子内装有四张一样的卡片,四张卡片中有2张写着数字1,2张写着数字5顾客随机从箱子内抽出两张卡片,两张卡片上的数字和记为,的值和享受的优惠如表所示的值2610实际付款8折7折6折(1)若按方案二的抽奖方式,利用树形图(或列表法)求一次抽奖获得7折优惠的概率;(2)若某顾客的购物金额为元(),请用所学统计与概率的知识,求出选择方案二更优惠时的取值范围4、根据你所学的概率知识, 回答下列问题:(1)我们知道: 抛掷一枚均匀的硬币, 硬币正面朝上的概率是_ 若抛两枚均匀硬币, 硬币落地后, 求两枚硬币都是正面朝上的概率 (用树状图或列表来说明)(2)小刘同学想估计一枚纪念币正面朝上的概率,

    10、 通过试验得到的结果如下表所示:抛掷次数 50010001500250030004000500010000“正面朝上”的次数 26551279313061558208325985204“正面朝上”的频率 根据上表, 下面有三个推断:当抛掷次数是1000时, “正面朝上”的频率是, 所以“正面朝上”的概率是; 随着试验次数的增加, “正面朝上”的频率总是在附近摆动, 显示出一定稳定性, 可以估计“正面朝上”的概率是;若再做随机抛郑该纪念币的试验, 则当抛掷次数为3000时, 出现“正面朝上”的次数不一定是1558次;其中推断合理的序号是_5、劳动教育具有树德、增智、强体、育美的综合育人价值,有利

    11、于学生树立正确的劳动价值观某学校为了解学生参加家务劳动的情况,随机抽取了名学生在某个休息日做家务的劳动时间作为样本,并绘制了以下不完整的频数分布表和扇形统计图根据题中已有信息,解答下列问题:劳动时间(单位:小时)频数1228164(1)_,_;(2)若该校学生有640人,试估计劳动时间在范围的学生有多少人?(3)劳动时间在范围的4名学生中有男生2名,女生2名,学校准备从中任意抽取2名交流劳动感受,求抽取的2名学生恰好是一名男生和一名女生的概率-参考答案-一、单选题1、B【解析】【分析】由表格可知共摸球1000次,其中摸到白球的频率稳定在0.4,由此知袋子中摸出一个球,是白球的概率为0.4,据此

    12、根据概率公式可得答案【详解】解:由表格可知共摸球1000次,其中摸到白球的频率稳定在0.4,在袋子中摸出一个球,是白球的概率为0.4,设白球有x个,则=0.4,解得:x=2,故选:B【考点】本题主要考查利用频率估计概率及概率公式,熟练掌握频率估计概率的前提是在大量重复实验的前提下是解题的关键2、D【解析】【分析】直接利用概率的意义分析得出答案【详解】解:掷质地均匀硬币的试验,每次正面向上和向下的概率相同,再次掷出这枚硬币,正面朝上的概率是:故选:D【考点】此题主要考查了概率的意义,正确把握概率的意义是解题关键3、A【解析】【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到

    13、黄球的情况,然后利用概率公式求解即可求得答案注意此题属于放回实验【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,两次都摸到黄球的概率为,故选A【考点】此题考查的是用列表法或树状图法求概率的知识注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验4、D【解析】【分析】随机事件A的概率事件A可能出现的结果数所有可能出现的结果数【详解】解:每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率,故选D【考点】本题考查了概率,

    14、熟练掌握概率公式是解题的关键5、C【解析】【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与积为正数的情况,再利用概率公式求解即可求得答案【详解】解:列表如下:积212224122242由表可知,共有6种等可能结果,其中积为正数的有2种结果,所以积为正数的概率为,故选C【考点】本题考查了列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比6、B【解析】【分析】“翻开华东师大版数学九年级上册,恰好翻到第60页”,这个事件显然是可能发生的,应为随机事件【详解】“

    15、翻开华东师大版数学九年级上册,恰好翻到第60页”,这个事件是可能发生,也可能不发生,所以是随机事件故选:B【考点】本题考查了必然事件、随机事件、不可能事件的概念,在一定条件下,一定会发生的事件叫做必然事件,可能发生也可能不发生的叫做随机事件,一定不会发生的叫做不可能事件7、D【解析】【分析】计算出各个选项中事件的概率,根据概率即可作出判断【详解】A、朝上的点数是5的概率为,不符合试验的结果;B、朝上的点数是奇数的概率为,不符合试验的结果;C、朝上的点数大于2的概率,不符合试验的结果;D、朝上的点数是3的倍数的概率是,基本符合试验的结果故选:D【考点】本题考查了频率估计概率,当试验的次数较多时,

    16、频率稳定在某一固定值附近,这个固定值即为概率8、C【解析】【分析】利用列表法或树状图法找出所有出现的可能结果,再找出两次摸出的数字之和为奇数出现的可能结果即可求解【详解】1211+1=21+2=322+1=32+2=4从表中可知,共有4种等可能的结果,其中两次摸出的数字之和为奇数的有2种,所以两次摸出的数字之和为奇数的的概率是,故选:C【考点】本题考查了利用列表法或树状图法求概率,正确地列出表格或树状图是解题的关键注意:从中任意摸出一张,放回搅匀后再任意摸出一张9、B【解析】【分析】先由频率之和为1计算出白球的频率,再由数据总数频率=频数计算白球的个数【详解】解:摸到红色球、黑色球的频率稳定在

    17、15%和45%,摸到白球的频率为1-15%-45%=40%,故口袋中白色球的个数可能是4040%=16个故选B【考点】本题考查了利用频率求频数的知识,具体数目应等于总数乘部分所占总体的比值10、C【解析】【详解】试题解析:因为白球的概率为:;因为黄球的概率为:0.2;因为红球的概率为:0.3;因为绿球的概率为:0.35故选C二、填空题1、【解析】【分析】用初一(3)班报名学生人数除以总人数即可得【详解】解:在这6名同学中,有2人来自初一(3)班,被选中的这名同学恰好是初一(3)班同学的概率是,故答案为:【考点】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比2、6【解析】【分

    18、析】根据随机事件的概率等于所求情况数与总数之比列出方程,解方程即可求出n的值【详解】解:根据题意得:,解得:n6,经检验,n6是分式方程的解;故答案为:6【考点】本题主要考查分式方程的应用和随机事件的概率,掌握概率公式是解题的关键3、【解析】【分析】小球停留在黑砖上的概率等于黑砖的总面积除以图形的总面积,从而可得答案.【详解】解:小球停留在黑砖上的概率 故答案为:【考点】本题考查的是简单随机事件的概率,掌握简单随机事件的概率公式是解题的关键.4、【解析】【分析】根据无理数的概念确定这些实数中只有是无理数,即在这四个数中无理数只有1个,由此即可确定其出现的频率【详解】实数,3.14,0,中只有是

    19、无理数,无理数出现的频率为故答案为:【考点】本题考查无理数的概念和求频率确定这四个实数中无理数只有这一个是解题关键5、24【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设未知数列出方程求解【详解】解:共试验100次,其中有20次摸到红球,白球所占的比例为:,设袋子中共有白球x个,则,解得:x=24,经检验:x=24是原方程的解,故答案为:24【考点】本题考查利用频率估计概率大量反复试验下频率稳定值即概率关键是根据白球的频率得到相应的等量关系三、解答题1、 (1)200,7.2(2)3360(3)【解析】【分析】(1)先用“基本了解”的人

    20、数除以其所对应的百分比,可得调查的总人数,再求出“非常了解”的人数,进而得到“不太了解”的人数,最后用“不太了解”的人数所占的百分比乘以360,即可求解;(2)用12000乘以“非常了解”的人数所占的百分比,即可求解;(3)根据题意,列出表格,可得一共有20种等可能结果,其中恰好抽到一男一女的有12种,再根据概率公式,即可求解(1)解:根据题意得:人,“非常了解”的人数为人,“不太了解”的人数为人,“不太了解”所对应扇形的圆心角,即;(2)解:“非常了解”的人数有人;(3)解:根据题意,列出表格,如下:男1男2男3女1女2男1男2、男1男3、男1女1、男1女2、男1男2男1、男2男3、男2女1

    21、、男2女2、男2男3男1、男3男2、男3女1、男3女2、男3女1男1、女1男2、女1男3、女1女2、女1女2男1、女2男2、女2男3、女2女1、女2一共有20种等可能结果,其中恰好抽到一男一女的有12种,恰好抽到一男一女的概率为【考点】本题主要考查了扇形统计图和条形统计图,用样本估计总体,利用树状图和列表法求概率,明确题意,准确从统计图中获取信息是解题的关键2、 (1)60(2)11,90(3)100(4)【解析】【分析】(1)根据B:体育社团的人数和人数占比即可求出参与调查的总人数;(2)根据(1)所求总人数即可求出m;用360度乘以C:文学社团的人数占比即可求出的度数;(3)用600乘以样

    22、本中最喜欢“音乐社团”的人数占比即可得到答案;(4)画树状图或列表先得到所有的等可能性的结果数,然后找到符合题意的结果数,最后依据概率计算公式求解即可(1)解:(人),参加问卷调查的学生共有60人,故答案为:60;(2)解:由题意得:,故答案为:11;90;(3)解:(人),估计该校600名学生中最喜欢“音乐社团”的约有100人,故答案为:100;(4)解:设甲、乙、丙、丁四名同学分别用A,B,C,D表示,根据题意可画树状图或列表如下:第2人第1人ABCDAABACADBBABCBDCCACBCDDDADBDC由上图或上表可知,共有12种等可能的结果,符合条件的结果有2种,故恰好选中甲、乙两名

    23、同学的概率为【考点】本题主要考查了条形统计图与扇形统计图信息相关联,用样本估计总体,树状图或列表法求解概率等等,正确读懂统计图是解题的关键3、 (1)(2)【解析】【分析】(1)列出表格,得到所有的等可能的结果,根据概率公式即可得结果(2)根据题意分别表示出顾客按方案一、方案二需要支付的金额,然后根据选择方案二更优惠列出不等式,即可求解(1)解:列表如下:11551(1,1)(1,5)(1,5)1(1,1)(1,5)(1,5)5(5,1)(5,1)(5,5)5(5,1)(5,1)(5,5)由上表可知共有12种结果,并且他们发生的可能性相等,其中和为6的有8种该顾客选择方案二的抽奖方式获得7折优

    24、惠的概率为;(2)解:依题意知,所以该顾客可按方案二抽奖一次选择方案二时,由(1)可知,该顾客获得“8折”优惠的概率为,获得“7折”优惠的概率为,获得“6折”优惠的概率为,方案二的平均打折数为选择方案一时,该顾客需要支付元依题意可得:,解得:当时,该顾客选择方案二更优惠【考点】本题主要考查了用树状图或列表法求概率以及概率的应用和一元一次不等式,解题的关键是注意用树状图或列表法列出所有的等可能的结果时,做到不重复、不遗漏,以及熟记求简单等可能性事件的概率=所求情况数与总情况数之比4、 (1),(2)【解析】【分析】(1)根据概率公式求解抛掷一枚均匀的硬币,硬币正面朝上的概率;根据树状图求两枚均匀

    25、硬币时,硬币正面朝上的概率;(2)根据试验次数越大,频率稳定,可用频率估算概率,据此判断即可(1)抛掷一枚均匀的硬币,硬币正面朝上的概率是;若抛两枚均匀硬币时,画树状图如下:共有4种等可能的情况数,其中两枚硬币都是正面朝上有1种,则两枚硬币都是正面朝上的概率是;故答案为:,;(2)当抛掷次数是1000时,“正面向上”的频率是0.512,但“正面向上”的概率不一定是0.512,故本选项错误,不符合题意;随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520,故本选项正确,符合题意;若再次做随机抛掷该纪念币的试验,则当抛掷次数为30

    26、00时,出现“正面向上”的次数不一定是1558次,故本选项正确,符合题意;其中推断合理的序号是故答案为:【考点】本题考查了根据概率公式求概率,利用画树状图求概率,根据频率求概率,掌握求概率的方法是解题的关键5、 (1)80,20(2)160人(3)【解析】【分析】(1)先用的频数除以百分比求出抽取的人数m,再用m减去其他的人数求出a的值;(2)用该校的总人数乘以所占的百分比;(3)画出树状图,根据概率的计算公式即可得出答案(1)m=,a=80-12-28-16-4=20;故答案为:80,20;(2)(人),劳动时间在范围的学生有160人;(3)画树状图如图所示:总共有12种等可能结果,其中抽取的2名学生恰好是一名男生和一名女生的结果有8种,抽取的2名学生恰好是一名男生和一名女生概率:【考点】本题考查了列表法或树状图法、用样本估计总体、频数分布表和扇形统计图,解决本题的关键是掌握概率公式

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年人教版九年级数学上册第二十五章概率初步定向训练练习题(含答案解析).docx
    链接地址:https://www.ketangku.com/wenku/file-696071.html
    相关资源 更多
  • 专题24 与二次函数相关的压轴题-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版).docx专题24 与二次函数相关的压轴题-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版).docx
  • 专题24 三角函数中的化简求值(教师版).docx专题24 三角函数中的化简求值(教师版).docx
  • 专题24 、25估算题和电路设计电路动态变化-2021年全国中考物理真题专项汇编(第一期)(解析版).docx专题24 、25估算题和电路设计电路动态变化-2021年全国中考物理真题专项汇编(第一期)(解析版).docx
  • 专题24 unit 12 易错综合练习-2021-2022学年七年级下册单元重难点易错题精练(人教版).docx专题24 unit 12 易错综合练习-2021-2022学年七年级下册单元重难点易错题精练(人教版).docx
  • 专题24直线的方程-【中职专用】中职高考数学二轮复习专项突破.docx专题24直线的方程-【中职专用】中职高考数学二轮复习专项突破.docx
  • 专题24正弦定理和余弦定理-2021年新高考数学基础考点一轮复习.docx专题24正弦定理和余弦定理-2021年新高考数学基础考点一轮复习.docx
  • 专题24复数及推理与证明【多选题】(解析版).docx专题24复数及推理与证明【多选题】(解析版).docx
  • 专题24复数及推理与证明【多选题】(原卷版).docx专题24复数及推理与证明【多选题】(原卷版).docx
  • 专题23锐角三角函数-2021年中考数学真题分项汇编(原卷版)【全国通用】(第02期).docx专题23锐角三角函数-2021年中考数学真题分项汇编(原卷版)【全国通用】(第02期).docx
  • 专题23概率统计与图论(教师版含解析)-备战2021年高中数学联赛之历年真题汇编(1981-2020).docx专题23概率统计与图论(教师版含解析)-备战2021年高中数学联赛之历年真题汇编(1981-2020).docx
  • 专题23概率统计与图论(学生版)-备战2021年高中数学联赛之历年真题汇编(1981-2020).docx专题23概率统计与图论(学生版)-备战2021年高中数学联赛之历年真题汇编(1981-2020).docx
  • 专题23实验:探究加速度与物体受力、物体质量的关系.docx专题23实验:探究加速度与物体受力、物体质量的关系.docx
  • 专题23函数与矩形存在性问题-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(解析版).docx专题23函数与矩形存在性问题-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(解析版).docx
  • 专题23函数与矩形存在性问题-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(原卷版).docx专题23函数与矩形存在性问题-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(原卷版).docx
  • 专题23二面角、面面角大题专练B卷-2023届高三数学二轮专题复习.docx专题23二面角、面面角大题专练B卷-2023届高三数学二轮专题复习.docx
  • 专题23二次函数推理计算与证明综合问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(解析版).docx专题23二次函数推理计算与证明综合问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(解析版).docx
  • 专题23二次函数推理计算与证明综合问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx专题23二次函数推理计算与证明综合问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx
  • 专题23《不规则物体体积算法》2020-2021学年小升初数学真题汇编专项复习训练(全国通用).docx专题23《不规则物体体积算法》2020-2021学年小升初数学真题汇编专项复习训练(全国通用).docx
  • 专题23 相似形.docx专题23 相似形.docx
  • 专题23 实验:探究加速度与力、质量的关系.docx专题23 实验:探究加速度与力、质量的关系.docx
  • 专题23.6 解直角三角形章末九大题型总结(拔尖篇)(沪科版)(解析版).docx专题23.6 解直角三角形章末九大题型总结(拔尖篇)(沪科版)(解析版).docx
  • 专题23.6 解直角三角形章末九大题型总结(拔尖篇)(沪科版)(原卷版).docx专题23.6 解直角三角形章末九大题型总结(拔尖篇)(沪科版)(原卷版).docx
  • 专题23.4 解直角三角形章末拔尖卷(沪科版)(解析版).docx专题23.4 解直角三角形章末拔尖卷(沪科版)(解析版).docx
  • 专题23.4 解直角三角形章末拔尖卷(沪科版)(原卷版).docx专题23.4 解直角三角形章末拔尖卷(沪科版)(原卷版).docx
  • 专题23.3 构造直角三角形解题四大题型(沪科版)(解析版).docx专题23.3 构造直角三角形解题四大题型(沪科版)(解析版).docx
  • 专题23.2 解直角三角形【十大题型】(举一反三)(沪科版)(解析版).docx专题23.2 解直角三角形【十大题型】(举一反三)(沪科版)(解析版).docx
  • 专题23.2 解直角三角形【十大题型】(举一反三)(沪科版)(原卷版).docx专题23.2 解直角三角形【十大题型】(举一反三)(沪科版)(原卷版).docx
  • 专题23-申请信.docx专题23-申请信.docx
  • 专题23 阅读理解 议论文 - 2023年中考英语语法题型总复习宝典.docx专题23 阅读理解 议论文 - 2023年中考英语语法题型总复习宝典.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1