2023届新高考数学专题复习 专题38 数列中的通项公式(教师版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023届新高考数学专题复习 专题38 数列中的通项公式教师版 2023 新高 数学 专题 复习 38 数列 中的 公式 教师版
- 资源描述:
-
1、专题38 数列中的通项公式 一、题型选讲题型一 、由的关系求通项公式例1、(2020届山东省烟台市高三上期末)已知数列的前项和满足,且.求数列的通项公式;【解析】因为,所以,两式相减得,整理得, 即,所以为常数列,所以, 所以例2、(2020届山东省枣庄、滕州市高三上期末)已知等比数列满足成等差数列,且;等差数列的前n项和.求:(1);【解析】设的公比为q.因为成等差数列,所以,即.因为,所以.因为,所以.因此.由题意,.所以,从而.所以的公差.所以.例3、(2020届山东省德州市高三上期末)已知数列的前项和为,且,.求数列的通项公式;【解析】当时,整理得,解得;当时,可得,得,即,化简得,因
2、为,所以,从而是以为首项,公差为的等差数列,所以;题型二、由的递推关系求通项公式例3、【2019年高考全国II卷理数】已知数列an和bn满足a1=1,b1=0,.(1)证明:an+bn是等比数列,anbn是等差数列;(2)求an和bn的通项公式.【解析】(1)由题设得,即又因为a1+b1=l,所以是首项为1,公比为的等比数列由题设得,即又因为a1b1=l,所以是首项为1,公差为2的等差数列(2)由(1)知,所以,例4、(2020届山东省德州市高三上期末)对于数列,规定为数列的一阶差分数列,其中,对自然数,规定为数列的阶差分数列,其中.若,且,则数列的通项公式为( )ABCD【答案】B【解析】根
3、据题中定义可得,即,即,等式两边同时除以,得,且,所以,数列是以为首项,以为公差的等差数列,因此,.故选:B.例5、【2019年高考天津卷理数】设是等差数列,是等比数列已知()求和的通项公式;()设数列满足其中(i)求数列的通项公式;【解析】(1)设等差数列的公差为,等比数列的公比为依题意得解得故所以,的通项公式为的通项公式为(2)(i)所以,数列的通项公式为题型三、新定义题型中通项公式的求法例6、【2020年高考江苏】已知数列的首项a1=1,前n项和为Sn设与k是常数,若对一切正整数n,均有成立,则称此数列为“k”数列(1)若等差数列是“1”数列,求的值;(2)若数列是“”数列,且,求数列的
4、通项公式;【解析】(1)因为等差数列是“1”数列,则,即,也即,此式对一切正整数n均成立若,则恒成立,故,而,这与是等差数列矛盾所以(此时,任意首项为1的等差数列都是“11”数列)(2)因为数列是“”数列,所以,即因为,所以,则令,则,即解得,即,也即,所以数列是公比为4的等比数列因为,所以则例7、【2019年高考北京卷理数】已知数列an,从中选取第i1项、第i2项、第im项(i1i2im),若,则称新数列为an的长度为m的递增子列规定:数列an的任意一项都是an的长度为1的递增子列(1)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(2)已知数列an的长度为p的递增子列的末项的
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
