分享
分享赚钱 收藏 举报 版权申诉 / 6

类型《优化方案》2013年高考总复习文科数学第八章第5课时知能演练 轻松闯关 WORD版含答案.doc

  • 上传人:a****
  • 文档编号:466561
  • 上传时间:2025-12-08
  • 格式:DOC
  • 页数:6
  • 大小:254KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    优化方案 优化方案2013年高考总复习文科数学第八章第5课时知能演练 轻松闯关 WORD版含答案 优化 方案 2013 年高 复习 文科 数学 第八 课时 知能 演练 轻松 闯关 WORD 答案
    资源描述:

    1、1已知m,n为不同的直线,为不同的平面,给出下列命题:nm;mn.其中正确的是()ABC D解析:选C.命题即为直线与平面垂直的性质定理命题正确;命题显然成立;命题的结论中,应为mn或m与n相交或m与n成异面直线才成立命题错误2(2011高考辽宁卷)如图,四边形ABCD为正方形,QA平面ABCD,PDQA,QAABPD.(1)证明:PQ平面DCQ;(2)求棱锥QABCD的体积与棱锥PDCQ的体积的比值解:(1)证明:由条件知四边形PDAQ为直角梯形因为QA平面ABCD,所以平面PDAQ平面ABCD,交线为AD.又四边形ABCD为正方形,DCAD.所以DC平面PDAQ,可得PQDC.在直角梯形P

    2、DAQ中可得DQPQPD,则PQQD.又DQDCD,所以PQ平面DCQ.(2)设ABa.由题设知AQ为棱锥QABCD的高,所以棱锥QABCD的体积V1a3.由(1)知PQ为棱锥PDCQ的高,而PQa,DCQ的面积为a2,所以棱锥PDCQ的体积V2a3.故棱锥QABCD的体积与棱锥PDCQ的体积的比值为1.3.如图为一简单组合体,其底面ABCD为正方形,PD平面ABCD,ECPD,且PD2EC,(1)求证:BE平面PDA;(2)若N为线段PB的中点,求证:NE平面PDB.证明:(1)ECPD,PD平面PDA,EC平面PDA,EC平面PDA.同理可得BC平面PDA.EC平面EBC,BC平面EBC且

    3、ECBCC,平面EBC平面PDA.又BE平面EBC,BE平面PDA.(2)连接AC,与BD交于点F,连接NF,F为BD的中点,NFPD且NFPD,又ECPD且ECPD.NFEC且NFEC.四边形NFCE为平行四边形NEFC.PD平面ABCD,AC面ABCD,ACPD.又DBAC,PDBDD,AC面PBD.NE面PDB.一、选择题1若三个平面,之间有,则与()A垂直B平行C相交 D以上三种可能都有解析:选D.垂直于同一个平面的两个平面的位置关系不确定,故选D.2已知m是平面的一条斜线,点A,l为过点A的一条动直线,那么下列情形可能出现的是()Alm,l Blm,lClm,l Dlm,l解析:选C

    4、.设m在平面内的射影为n,当ln且与无公共点时,lm,l.3正方体ABCDABCD中,E为AC的中点,则直线CE垂直于()AAC BBDCAD DAA解析:选B.连接BD,BDAC,BDCC,且ACCCC,BD平面CCE.而CE平面CCE,BDCE.又BDBD,BDCE.4(2012威海质检)设m、n是两条不同的直线,、是两个不同的平面,则下列命题中正确的是()A若mn,m,则nB若,m,则mC若,m,则mD若mn,m,n,则解析:选D.选项A、B、C的结论中都还有直线在平面内的位置关系在选项D中可以证明、所成二面角为直二面角故选D.5.如图,已知ABC为直角三角形,其中ACB90,M为AB的

    5、中点,PM垂直于ABC所在平面,那么()APAPBPCBPAPBPCCPAPBPCDPAPBPC解析:选C.M为AB的中点,ACB为直角三角形,BMAMCM,又PM平面ABC,RtPMBRtPMARtPMC,故PAPBPC.二、填空题6已知a、b是两条不重合的直线,、是三个两两不重合的平面,给出下列四个命题:若a,a,则;若,则;若,a,b,则ab;若,a,b,则ab.其中正确命题的序号有_解析:垂直于同一直线的两平面平行,正确;也成立,错;a、b也可异面,错;由面面平行性质知,ab,正确答案:7.如图所示,在四棱锥PABCD中,PA底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满

    6、足_时,平面MBD平面PCD.(只要填写一个你认为是正确的条件即可)解析:由定理可知,BDPC.当DMPC(或BMPC)时,即有PC平面MBD,而PC平面PCD,平面MBD平面PCD.答案:DMPC(或BMPC等)8.如图所示,正方体ABCDA1B1C1D1的棱长是1,过A点作平面A1BD的垂线,垂足为点H,有下列三个命题:点H是A1BD的中心;AH垂直于平面CB1D1;AC1与B1C所成的角是90.其中正确命题的序号是_解析:由于ABCDA1B1C1D1是正方体,所以AA1BD是一个正三棱锥,因此A点在平面A1BD上的射影H是三角形A1BD的中心,故正确;又因为平面CB1D1与平面A1BD平

    7、行,所以AH平面CB1D1,故正确;从而可得AC1平面CB1D1,即AC1与B1C垂直,所成的角等于90.答案:三、解答题9(2011高考江苏卷)如图,在四棱锥P-ABCD中,平面PAD平面ABCD,ABAD,BAD60,E,F分别是AP,AD的中点求证:(1)直线EF平面PCD;(2)平面BEF平面PAD.证明:(1)如图,在PAD中,因为E,F分别为AP,AD的中点,所以EFPD.又因为EF平面PCD,PD平面PCD,所以直线EF平面PCD.(2)连接BD.因为ABAD,BAD60,所以ABD为正三角形因为F是AD的中点,所以BFAD.因为平面PAD平面ABCD,BF平面ABCD,平面PA

    8、D平面ABCDAD,所以BF平面PAD.又因为BF平面BEF,所以平面BEF平面PAD.10(2011高考浙江卷)如图,在三棱锥P-ABC中,ABAC,D为BC的中点,PO平面ABC,垂足O落在线段AD上(1)证明:APBC;(2)已知BC8,PO4,AO3,OD2,求二面角B-AP-C的大小解:(1)证明:由ABAC,D是BC的中点,得ADBC.又PO平面ABC,得POBC.因为POADO,所以BC平面PAD,故BCPA.(2)如图,在平面PAB内作BMPA于M,连CM.因为BCPA,得PA平面BMC,所以APCM.故BMC为二面角B-AP-C的平面角在RtADB中,AB2AD2BD241,

    9、得AB.在RtPOD中,PD2PO2OD2,在RtPDB中,PB2PD2BD2,所以PB2PO2OD2BD236,得PB6.在RtPOA中,PA2AO2OP225,得PA5.又cosBPA,从而sinBPA.故BMPBsinBPA4.同理CM4.因为BM2MC2BC2,所以BMC90,即二面角B-AP-C的大小为90.11(探究选做)如图,四棱锥PABCD中,底面ABCD是矩形,PA底面ABCD,PAAB1,AD,点F是PB的中点,点E在边BC上移动(1)点E为BC的中点时,试判断EF与平面PAC的位置关系并说明理由;(2)证明:无论点E在BC边的何处,都有PEAF.解:(1)当点E为BC的中点时,EF与平面PAC平行在PBC中,E、F分别为BC、PB的中点,EFPC,又EF平面PAC,而PC平面PAC,EF平面PAC.(2)证明:PA平面ABCD,BE平面ABCD,EBPA.又EBAB,ABAPA,AB,AP平面PAB,EB平面PAB,又AF平面PAB,AFBE.又PAAB1,点F是PB的中点,AFPB.又PBBEB,PB、BE平面PBE,AF平面PBE.PE平面PBE,AFPE.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:《优化方案》2013年高考总复习文科数学第八章第5课时知能演练 轻松闯关 WORD版含答案.doc
    链接地址:https://www.ketangku.com/wenku/file-466561.html
    相关资源 更多
  • 浙江省2012届高三高考模拟仿真冲刺(二)数学理试卷 PDF版含答案.pdf浙江省2012届高三高考模拟仿真冲刺(二)数学理试卷 PDF版含答案.pdf
  • 小学数学思维培养掌中宝·2级.pdf小学数学思维培养掌中宝·2级.pdf
  • 海沧区2023-2024学年第一学期八年级数学试题.pdf海沧区2023-2024学年第一学期八年级数学试题.pdf
  • 湖南长沙市芙蓉区2022年下学期二年级期末质量检测卷数学试卷.pdf湖南长沙市芙蓉区2022年下学期二年级期末质量检测卷数学试卷.pdf
  • 湖南长沙市芙蓉区2022年下学期一年级期末质量检测卷数学试卷.pdf湖南长沙市芙蓉区2022年下学期一年级期末质量检测卷数学试卷.pdf
  • 湖南长沙市芙蓉区2018年下学期四年级期末质量检测数学试卷【无答案】.pdf湖南长沙市芙蓉区2018年下学期四年级期末质量检测数学试卷【无答案】.pdf
  • 湖南长沙市芙蓉区2018年下学期三年级期末质量检测数学试卷【无答案】.pdf湖南长沙市芙蓉区2018年下学期三年级期末质量检测数学试卷【无答案】.pdf
  • 湖南长沙五年级数学联考试卷.pdf湖南长沙五年级数学联考试卷.pdf
  • 湖南长沙五年级下册数学联考试卷及答案.pdf湖南长沙五年级下册数学联考试卷及答案.pdf
  • 湖南省长郡中学2024届高三数学上学期月考(二)(PDF版附解析).pdf湖南省长郡中学2024届高三数学上学期月考(二)(PDF版附解析).pdf
  • 小学数学1-5年级练习册(合订本).pdf小学数学1-5年级练习册(合订本).pdf
  • 小学数学1-5年级上下10本练习册(合订本).pdf小学数学1-5年级上下10本练习册(合订本).pdf
  • 湖南省长沙市长郡中学2023-2024学年高三上学期月考(五)数学试卷.pdf湖南省长沙市长郡中学2023-2024学年高三上学期月考(五)数学试卷.pdf
  • 湖南省长沙市中学2023-2024学年高一上学期入学考试数学试卷.pdf湖南省长沙市中学2023-2024学年高一上学期入学考试数学试卷.pdf
  • 湖南省长沙市中学2022-2023学年高二下学期数学竞赛试题(解析版).pdf湖南省长沙市中学2022-2023学年高二下学期数学竞赛试题(解析版).pdf
  • 湖南省长沙市中学2022-2023学年高二下学期数学竞赛试题(原卷版).pdf湖南省长沙市中学2022-2023学年高二下学期数学竞赛试题(原卷版).pdf
  • 海南省2020年中考数学试题【附答案】.pdf海南省2020年中考数学试题【附答案】.pdf
  • 海南省2019年中考数学试题【附答案】.pdf海南省2019年中考数学试题【附答案】.pdf
  • 海南省2018年中考数学试卷【附答案】.pdf海南省2018年中考数学试卷【附答案】.pdf
  • 湖南省邵阳市中学2022-2023学年高一下学期期末考试数学试题.pdf湖南省邵阳市中学2022-2023学年高一下学期期末考试数学试题.pdf
  • 河北省部分学校2022-2023学年高三数学上学期11月联考试卷(PDF版附解析).pdf河北省部分学校2022-2023学年高三数学上学期11月联考试卷(PDF版附解析).pdf
  • 小学四年级2021秋一遍过-数学-RJ-4上(全)(答案回填)-31719.pdf小学四年级2021秋一遍过-数学-RJ-4上(全)(答案回填)-31719.pdf
  • 河北省邯郸市七年级下学期期中数学试题【附答案】.pdf河北省邯郸市七年级下学期期中数学试题【附答案】.pdf
  • 河北省邯郸市2022届高三上学期开学摸底考试数学试题全解全析.pdf河北省邯郸市2022届高三上学期开学摸底考试数学试题全解全析.pdf
  • 河北省邢台市襄都区等五地2022-2023学年高二数学上学期12月联考试卷(PDF版附答案).pdf河北省邢台市襄都区等五地2022-2023学年高二数学上学期12月联考试卷(PDF版附答案).pdf
  • 河北省邢台市四校质检联盟2023-2024学年高三数学上学期期中考试试题(PDF版附答案).pdf河北省邢台市四校质检联盟2023-2024学年高三数学上学期期中考试试题(PDF版附答案).pdf
  • 河北省邢台市六校联考2022-2023学年高二数学上学期期中考试试卷(PDF版有答案).pdf河北省邢台市六校联考2022-2023学年高二数学上学期期中考试试卷(PDF版有答案).pdf
  • 河北省邢台2023-2024高三数学上学期第四次联合月考试题(pdf).pdf河北省邢台2023-2024高三数学上学期第四次联合月考试题(pdf).pdf
  • 河北省衡水中学2022届高三数学上学期第一次调研(8月)试题(PDF版附答案).pdf河北省衡水中学2022届高三数学上学期第一次调研(8月)试题(PDF版附答案).pdf
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1