2021高考数学大一轮复习考点规范练16导数的综合应用理新人教A版202006100134.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 高考 数学 一轮 复习 考点 规范 16 导数 综合 应用 新人 202006100134
- 资源描述:
-
1、考点规范练16导数的综合应用考点规范练B册第9页基础巩固1.已知函数f(x)=x3+ax2+bx+c在x=-23与x=1处都取得极值.(1)求a,b的值及函数f(x)的单调区间;(2)若对于x-1,2,不等式f(x)c2恒成立,求c的取值范围.解:(1)f(x)=x3+ax2+bx+c,f(x)=3x2+2ax+b.又f(x)在x=-23与x=1处都取得极值,f-23=129-43a+b=0,f(1)=3+2a+b=0,两式联立解得a=-12,b=-2,f(x)=x3-12x2-2x+c,f(x)=3x2-x-2=(3x+2)(x-1),令f(x)=0,得x1=-23,x2=1,当x变化时,f
2、(x),f(x)的变化情况如下表:x-,-23-23-23,11(1,+)f(x)+0-0+f(x)极大值极小值函数f(x)的递增区间为-,-23与(1,+);递减区间为-23,1.(2)f(x)=x3-12x2-2x+c,x-1,2,当x=-23时,f-23=2227+c为极大值,而f(2)=2+c,则f(2)=2+c为最大值,要使f(x)f(2)=2+c,解得c2.c的取值范围为(-,-1)(2,+).2.设函数f(x)=e2x-aln x.(1)讨论f(x)的导函数f(x)的零点的个数;(2)证明:当a0时,f(x)2a+aln 2a.(1)解f(x)=e2x-alnx的定义域为(0,+
3、),f(x)=2e2x-ax.当a0时,f(x)0恒成立,故f(x)没有零点.当a0时,y=e2x在区间(0,+)内单调递增,y=-ax在区间(0,+)内单调递增,f(x)在区间(0,+)内单调递增.当x0时,y=e2x1,y=-ax-,f(x)-.又f(a)0,当a0时,导函数f(x)存在唯一的零点.(2)证明由(1)知,可设导函数f(x)在区间(0,+)内的唯一零点为x0,当x(0,x0)时,f(x)0,f(x)在区间(0,x0)内单调递减,在区间(x0,+)内单调递增,当x=x0时,f(x)取得最小值,最小值为f(x0).2e2x0-ax0=0,f(x0)=a2x0+2ax0+aln2a
4、2a+aln2a,当且仅当x0=12时等号成立,此时a=e.故当a0时,f(x)2a+aln2a.3.(2019辽宁实验中学高三模拟)已知函数f(x)=a-sinxx,0x.(1)当x=x0时,f(x)取得最小值f(x0),求实数a的取值范围及f(x0)的取值范围;(2)当a=,0m0.(1)解f(x)=-xcosx-a+sinxx2,设g(x)=sinx-xcosx-a,则g(x)=xsinx0在区间(0,)内恒成立,故g(x)在区间(0,)内单调递增.由f(x)在x=x0处取到最小值可知,存在x0(0,),使f(x0)=0,即g(x)=0在区间(0,)内有解,则g(0)=-a0,解得0a0
5、,只需证明x+mlnxsinxx.设函数h(x)=x-sinx,则h(x)=1-cosx0在区间(0,)内恒成立,故h(x)在区间(0,)内单调递增,故h(x)h(0)=0,即xsinx.又x(0,),所以sinxx1.设函数m(x)=x+mlnx,则m(x)=mx-x2.当0m1时,m(x)m()=1+mln1.当1m时,若mx0,若0xm,则m(x)mm=m+mlnm1.综上,x+mlnx1sinxx在区间(0,)内恒成立.故当a=,0m0.4.已知函数f(x)=ax+x2-xln a(a0,a1).(1)当a1时,求证:函数f(x)在区间(0,+)内单调递增;(2)若函数y=|f(x)-
6、t|-1有三个零点,求t的值.(1)证明f(x)=axlna+2x-lna=2x+(ax-1)lna,由于a1,当x(0,+)时,lna0,ax-10,所以f(x)0,故函数f(x)在区间(0,+)内单调递增.(2)解当a0,a1时,f(x)=2x+(ax-1)lna,f(x)=2+ax(lna)20,f(x)在R上单调递增,f(0)=0,故f(x)=0有唯一解x=0,x,f(x),f(x)的变化情况如下表所示:x(-,0)0(0,+)f(x)-0+f(x)递减极小值递增又函数y=|f(x)-t|-1有三个零点,方程f(x)=t1有三个根,而t+1t-1,所以t-1=f(x)min=f(0)=
7、1,解得t=2.能力提升5.(2019河北石家庄高三一模)已知函数f(x)=ln x+a-1x,g(x)=a(sinx+1)-2x,aR.(1)求函数f(x)的极小值;(2)求证:当-1a1时,f(x)g(x).(1)解f(x)=1x-a-1x2=x-(a-1)x2(x0).当a-10,即a1时,f(x)0,函数f(x)在区间(0,+)内单调递增,无极小值.当a-10,即a1时,由f(x)0,得0x0,得xa-1,函数f(x)在区间(a-1,+)内单调递增.故f(x)的极小值为f(a-1)=1+ln(a-1).综上所述,当a1时,f(x)无极小值;当a1时,f(x)的极小值为1+ln(a-1)
8、.(2)证明令F(x)=f(x)-g(x)=lnx+a-1x-a(sinx+1)-2x=xlnx-asinx+1x(x0).(方法一)当-1a1时,要证f(x)g(x),即证F(x)0,即证xlnx-asinx+10.要证xlnx-asinx+10,即证xlnxasinx-1.当0h(0)=0,即xsinx.所以ax-1asinx-1.令q(x)=xlnx-x+1,则q(x)=lnx,当x(0,1)时,q(x)0,q(x)在区间(1,+)内单调递增,故q(x)q(1)=0,即xlnxx-1.又因为0asinx-1.所以当0asinx-1成立.当a=0时,即证xlnx-1.令m(x)=xlnx,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-631557.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
