分享
分享赚钱 收藏 举报 版权申诉 / 24

类型2022年解析卷人教版数学八年级上册期中模拟考考卷(Ⅲ)(含答案及解析).docx

  • 上传人:a****
  • 文档编号:712430
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:24
  • 大小:812.50KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 解析 卷人教版 数学 年级 上册 期中 模拟 考考 答案
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中模拟考考卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,在ABC中,D为BC上一点,12,34,BAC105,则DAC的度

    2、数为()A80B82C84D862、如图,ABC中,B=2A,ACB的平分线CD交AB于点D,已知AC=16,BC=9,则BD的长为()A6B7C8D93、如图,在中,平分,于点的角平分线所在直线与射线相交于点,若,且,则的度数为()ABCD4、下列图形为正多边形的是()ABCD5、下列说法中错误的是( )A三角形的一个外角大于任何一个内角B有一个内角是直角的三角形是直角三角形C任意三角形的外角和都是D三角形的中线、角平分线,高线都是线段二、多选题(5小题,每小题4分,共计20分)1、将一个三角形纸片剪开分成两个三角形,这两个三角形可能是()A都是直角三角形B都是钝角三角形C都是锐角三角形D是

    3、一个直角三角形和一个钝角三角形2、如图,已知,下列结论正确的有() 线 封 密 内 号学级年名姓 线 封 密 外 ABCD3、如图,为了估计池塘两岸,间的距离,在池塘的一侧选取点,测得米,米,那么,间的距离可能是()A5米B8.7米C27米D18米4、如图,点P在AOB的平分线上,若使AOPBOP,则需添加的一个条件是()AOA=OBBAP=BPCAOP=BOPDAPO=BPO5、如图,O是正六边形ABCDE的中心,下列图形不可能由OBC平移得到的是()AOCDBOABCOAFDOEF第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,在中,点D在上,将沿直线翻折后,

    4、点C落在点E处,联结,如果DE/AB,那么的度数是_度2、如图,CA=CB,CD=CE,ACB=DCE=50,AD、BE交于点H,连接CH,则CHE=_3、一个三角形的周长是偶数,其中的两条边是4和2012,则满足上述条件的三角形的个数是_个4、已知三角形的两边长分别为3和6,则这个三角形的第三边长可以是_(写出一个即可),5、如图,在矩形ABCD中,AB8cm,AD12cm,点P从点B出发,以2cm/s的速度沿BC边向点C运动,到达点C停止,同时,点Q从点C出发,以vcm/s的速度沿CD边向点D运动,到达点D停止,规定其中一个动点停止运动时,另一个动点也随之停止运动当v为_时,ABP与PCQ

    5、全等四、解答题(5小题,每小题8分,共计40分)1、已知如图,ABC中,AB=AC,D、E分别是AC、AB上的点, M、N分别是CE、BD上的点,若MACE,ANBD,AM=AN求证:EM=DN 线 封 密 内 号学级年名姓 线 封 密 外 2、用反证法证明:一个三角形中不能有两个角是直角3、如图,在ABC中,ABC、ACB的平分线交于点D,延长BD交AC于E,G、F分别在BD、BC上,连接DF、GF,其中A2BDF,GDDE(1)当A80时,求EDC的度数;(2)求证:CFFGCE4、如图,已知ABC,ACAB,C45请用尺规作图法,在AC边上求作一点P,使PBC45(保留作图痕迹不写作法)

    6、5、已知:/求证:/-参考答案-一、单选题1、A【解析】【分析】根据三角形的内角和定理和三角形的外角性质即可解决【详解】解:BAC105,237512,431222把代入得:3275,225DAC1052580故选A【考点】 线 封 密 内 号学级年名姓 线 封 密 外 此题主要考查了三角形的外角性质以及三角形内角和定理,熟记三角形的内角和定理,三角形的外角性质是解题的关键2、B【解析】【分析】如图,在上截取 连接证明利用全等三角形的性质证明 求解 再证明 从而可得答案【详解】解:如图,在上截取 连接 平分 故选:【考点】本题考查的是全等三角形的判定与性质,等腰三角形的判定,掌握以上知识是解题

    7、的关键3、C【解析】【分析】由角平分线的定义可以得到,设,假设,通过角的等量代换可得到,代入的值即可【详解】平分,平分,设可以假设,设,则 线 封 密 内 号学级年名姓 线 封 密 外 故答案选:C【考点】本题主要考查了角平分线的定义以及角的等量代换,三角形的内角和定理,外角的性质,二元一次方程组的应用,灵活设立未知数代换角是解题的关键4、D【解析】【分析】根据正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形可得答案【详解】根据正多边形的定义,得到D中图形是正五边形故选D【考点】本题考查了正多边形,关键是掌握正多边形的定义5、A【解析】【分析】根据三角形的性质判断选项的正确性【详

    8、解】A选项错误,钝角三角形的钝角的外角小于内角;B选项正确;C选项正确;D选项正确故选:A【考点】本题考查三角形的性质,解题的关键是掌握三角形的各种性质二、多选题1、ABD【解析】【分析】分三种情况讨论,即可得到这两个三角形不可能都是锐角三角形【详解】解:如图,沿三角形一边上的高剪开即可得到两个直角三角形如图,钝角三角形沿虚线剪开即可得到两个钝角三角形如图,直角三角形沿虚线剪开即可得到一个直角三角形和一个钝角三角形因为剪开的边上的两个角是邻补角,不可能都是锐角,故这两个三角形不可能都是锐角三角形 线 封 密 内 号学级年名姓 线 封 密 外 综上所述,将一个三角形剪成两三角形,这两个三角形不可

    9、能都是锐角三角形故选:ABD【考点】本题主要考查了三角形的分类,理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图2、ACD【解析】【分析】只要证明ABEACF,ANCAMB,利用全等三角形的性质即可一一判断【详解】解:在ABE和ACF中,ABEACF(AAS),BAECAF,BECF,ABAC,BAEBACCAFBAC,即12,故C正确;在ACN和ABM中,ACNABM(ASA),故D正确;CNBMCFBE,EMFN,故A正确,CD与DN的大小无法确定,故B错误故选:ACD【考点】本题考查了全等三角形的判定与性质,熟记三角形全等的判定方法并准确识图,理清图中各角

    10、度之间的关系是解题的关键3、ABD【解析】【分析】连接AB,根据三角形的三边关系定理得出不等式,即可得出选项【详解】解:连接AB,PA=15米,PB=11米,由三角形三边关系定理得:1511AB15+11,4AB26,那么,间的距离可能是5米、8.7米、18米;故选:ABD【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了三角形的三边关系定理,能根据三角形的三边关系定理得出不等式是解此题的关键4、AD【解析】【分析】由已知可知一边一角对应相等,再结合各选项根据全等三角形的判定方法逐一进行判断即可【详解】点P在AOB的平分线上, ,又有 ,A、若 ,可用边角边证明AOPBOP,故

    11、本选项符合题意;B、若 ,是边边角,不能证明AOPBOP,故本选项不符合题意;C、若,只有一对角,一对边对应相等,不能证明AOPBOP,故本选项不符合题意;D、若 ,可用角边角证明AOPBOP,故本选项符合题意;故选:AD【考点】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法边角边、角边角、边边边是解题的关键5、ABD【解析】【分析】利用平移的定义和性质求解,平移不改变图形的形状和大小。图形经过平移,对应线段相等,对应角相等,对应点所连的线段相等。.【详解】解: O是正六边形ABCDE的中心,都是等边三角形,都不能由平移得到,可以由平移得到,故符合题意,不符合题意;故选:【考点】

    12、本题考查的是正多边形的性质,平移的定义,平移的性质,熟悉平移的含义与性质是解题的关键.三、填空题1、40【解析】【分析】先求出BAC,由AB/DE得出E=BAE,再根据翻折得性质得E=C,CAD=EAD,即可求出答案【详解】B=40,C=30,BAC=180-40-30=110,根据翻折的性质可知,E=C,CAD=EAD,E=30,AB/DE,E=BAE=30,EAC=BAC-BAE=110-30=80, 线 封 密 内 号学级年名姓 线 封 密 外 CAD=EAD=EAC=40,故答案为:40【考点】题目主要考查三角形翻折的性质,平行线的性质,三角形内角和定理等,理解题意,综合运用各个知识点

    13、是解题关键2、65【解析】【分析】先判断出,再判断出即可得到平分,即可得出结论【详解】解:如图,在和中,;过点作于,于,在和中,在与中,平分;,故答案为:【考点】此题考查了全等三角形的判定与性质以及角平分线的定义此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用3、3【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】根据三角形的三边关系,第三边的长一定大于已知的两边的差,而小于两边的和,求得相应范围后,根据周长是偶数舍去不合题意的值即可【详解】设第三边是x,则2008x2016而三角形的周长是偶数,故x为偶数,因而x=2010或2012或2014,满足条件的三角形共有

    14、3个故答案为:3个【考点】本题考查了三角形的三边关系已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和4、4(答案不唯一,在3x9之内皆可)【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于三边”,求得第三边的取值范围,即可得出结果【详解】解:根据三角形的三边关系,得:第三边应大于6-3=3,而小于6+3=9,故第三边的长度3x9故答案为:4(答案不唯一,在3x9之内皆可)【考点】此题主要考查了三角形的三边关系,根据三角形三边关系定理列出不等式,然后解不等式,确定取值范围即可5、2或【解析】【详解】可分两种情况:ABPPCQ得到BPCQ,ABPC

    15、,ABPQCP得到BACQ,PBPC,然后分别计算出t的值,进而得到v的值【解答】解:当BPCQ,ABPC时,ABPPCQ,AB8cm,PC8cm,BP1284(cm),2t4,解得:t2,CQBP4cm,v24,解得:v2;当BACQ,PBPC时,ABPQCP,PBPC,BPPC6cm,2t6,解得:t3,CQAB8cm,v38, 线 封 密 内 号学级年名姓 线 封 密 外 解得:v,综上所述,当v2或时,ABP与PQC全等,故答案为:2或【考点】此题考查了动点问题,全等三角形的性质的应用,解一元一次方程,正确理解全等三角形的性质得到相等的对应边求出t是解题的关键四、解答题1、见解析.【解

    16、析】【分析】首先由已知证明RtBANRtCAM,得到ABN=ACM,BN=CM,再根据ASA证明ABDACE,得到BD=CE,由此可得CE-CM= BD-BN,即EM=DN.【详解】证明:在RtBAN和RtCAM中,所以RtBANRtCAM(HL),ABN=ACM,BN=CM,在ABD和ACE中,ABDACE(ASA),BD=CE,CE-CM= BD-BN,即EM=DN.【考点】本题主要考查了三角形全等的判定和性质,熟练掌握判定定理和性质定理并能灵活运用是解题关键.2、见解析【解析】【分析】假设三角形的三个内角中有两个(或三个)直角,不妨设,则,这与三角形内角和为相矛盾,不成立,由此即可证明【

    17、详解】证明:假设三角形的三个内角中有两个(或三个)直角,不妨设,则,这与三角形内角和为相矛盾,不成立,所以一个三角形中不能有两个直角【考点】本题主要考查了反证法,解题的关键在于能够熟练掌握反证法的步骤3、 (1)(2)证明见解析【解析】【分析】(1)根据三角形内角和与角平分线定义可得,再根据外角性质即可求出;(2)在线段上取一点,使,连接,证明,得到,利用全等三角形的性质与外角性质得出,证明,从而得到,即可证明结论 线 封 密 内 号学级年名姓 线 封 密 外 (1)解:在ABC中,A80,ABC、ACB的平分线交于点D,EDC=DBC+DCB;(2)解:在线段上取一点,使,连接,如图所示:平

    18、分,在和中,为的一个外角,为的一个外角,平分,A2BDF,在和中,【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查三角形综合,涉及到三角形内角和定理的运用、角平分线定义、外角性质求角度、三角形全等的判定与性质等知识点,正确的做辅助线是解决问题的关键4、详见解析【解析】【分析】根据尺规作图法,作一个角等于已知角,在AC边上求作一点P,使PBC45即可【详解】解: 作法:(1)以点C为圆心,以任意长为半径画弧交AC于D,交BC于E,(2)以点B为圆心,以CD长为半径画弧,交BC于F,(3)以点F为圆心,以DE长为半径画弧,交前弧于点M,(3)连接BM,并延长BM与AC交于点P,则点P即为所求如图,点P即为所求【考点】本题考查了作图基本作图解决本题的关键是掌握基本作图方法5、见解析【解析】【分析】根据,得到A=C,然后推出AF=CE,即可证明ABFCDE得到AFB=CED,则【详解】解:,A=C,AE=CF,AE+EF=CF+EF,即AF=CE,在ABF和CDE中,ABFCDE(SAS),AFB=CED,【考点】本题主要考查了全等三角形的性质与判定,平行线的性质与判定,熟知全等三角形的性质与判定条件是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年解析卷人教版数学八年级上册期中模拟考考卷(Ⅲ)(含答案及解析).docx
    链接地址:https://www.ketangku.com/wenku/file-712430.html
    相关资源 更多
  • 人教版九年级数学上册第二十四章圆章节测试试题(解析卷).docx人教版九年级数学上册第二十四章圆章节测试试题(解析卷).docx
  • 人教版九年级数学上册第二十四章圆章节测试试卷(附答案详解).docx人教版九年级数学上册第二十四章圆章节测试试卷(附答案详解).docx
  • 人教版九年级数学上册第二十四章圆章节测试试卷(含答案详解版).docx人教版九年级数学上册第二十四章圆章节测试试卷(含答案详解版).docx
  • 人教版九年级数学上册第二十四章圆必考点解析试题(含答案解析).docx人教版九年级数学上册第二十四章圆必考点解析试题(含答案解析).docx
  • 人教版九年级数学上册第二十四章圆必考点解析试卷(含答案详解).docx人教版九年级数学上册第二十四章圆必考点解析试卷(含答案详解).docx
  • 人教版九年级数学上册第二十四章圆定向训练试卷(详解版).docx人教版九年级数学上册第二十四章圆定向训练试卷(详解版).docx
  • 人教版九年级数学上册第二十四章圆定向训练练习题.docx人教版九年级数学上册第二十四章圆定向训练练习题.docx
  • 人教版九年级数学上册第二十四章圆定向练习试题(解析卷).docx人教版九年级数学上册第二十四章圆定向练习试题(解析卷).docx
  • 人教版九年级数学上册第二十四章圆定向练习试卷(含答案详解版).docx人教版九年级数学上册第二十四章圆定向练习试卷(含答案详解版).docx
  • 人教版九年级数学上册第二十四章圆定向测试试题(详解版).docx人教版九年级数学上册第二十四章圆定向测试试题(详解版).docx
  • 人教版九年级数学上册第二十四章圆定向测试试卷(详解版).docx人教版九年级数学上册第二十四章圆定向测试试卷(详解版).docx
  • 人教版九年级数学上册第二十四章圆定向测试试卷(含答案详解版).docx人教版九年级数学上册第二十四章圆定向测试试卷(含答案详解版).docx
  • 人教版九年级数学上册第二十四章圆定向测评试题(含答案解析版).docx人教版九年级数学上册第二十四章圆定向测评试题(含答案解析版).docx
  • 人教版九年级数学上册第二十四章圆同步训练试题(详解版).docx人教版九年级数学上册第二十四章圆同步训练试题(详解版).docx
  • 人教版九年级数学上册第二十四章圆同步练习试题(含详解).docx人教版九年级数学上册第二十四章圆同步练习试题(含详解).docx
  • 人教版九年级数学上册第二十四章圆同步练习试卷(含答案详解).docx人教版九年级数学上册第二十四章圆同步练习试卷(含答案详解).docx
  • 人教版九年级数学上册第二十四章圆同步练习练习题(详解).docx人教版九年级数学上册第二十四章圆同步练习练习题(详解).docx
  • 人教版九年级数学上册第二十四章圆单元测试试题(含详解).docx人教版九年级数学上册第二十四章圆单元测试试题(含详解).docx
  • 人教版九年级数学上册第二十四章圆单元测试试题(含详细解析).docx人教版九年级数学上册第二十四章圆单元测试试题(含详细解析).docx
  • 人教版九年级数学上册第二十四章圆单元测试练习题(含答案详解).docx人教版九年级数学上册第二十四章圆单元测试练习题(含答案详解).docx
  • 人教版九年级数学上册第二十四章圆专题训练试卷(解析版含答案).docx人教版九年级数学上册第二十四章圆专题训练试卷(解析版含答案).docx
  • 人教版九年级数学上册第二十四章圆专题训练练习题(详解).docx人教版九年级数学上册第二十四章圆专题训练练习题(详解).docx
  • 人教版九年级数学上册第二十四章圆专题练习试题(详解).docx人教版九年级数学上册第二十四章圆专题练习试题(详解).docx
  • 人教版九年级数学上册第二十四章圆专题练习试题(含详细解析).docx人教版九年级数学上册第二十四章圆专题练习试题(含详细解析).docx
  • 人教版九年级数学上册第二十四章圆专题练习练习题(含答案解析).docx人教版九年级数学上册第二十四章圆专题练习练习题(含答案解析).docx
  • 人教版九年级数学上册第二十四章圆专题攻克试题(详解版).docx人教版九年级数学上册第二十四章圆专题攻克试题(详解版).docx
  • 人教版九年级数学上册第二十四章圆专项训练试题(含详细解析).docx人教版九年级数学上册第二十四章圆专项训练试题(含详细解析).docx
  • 人教版九年级数学上册第二十四章圆专项训练试卷.docx人教版九年级数学上册第二十四章圆专项训练试卷.docx
  • 人教版九年级数学上册第二十四章圆专项练习试题(解析卷).docx人教版九年级数学上册第二十四章圆专项练习试题(解析卷).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1