2022年高考数学一轮复习 考点规范练32 二元一次不等式(组)与简单的线性规划问题(含解析)新人教A版(文).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高考数学一轮复习 考点规范练32 二元一次不等式组与简单的线性规划问题含解析新人教A版文 2022 年高 数学 一轮 复习 考点 规范 32 二元 一次 不等式 简单 线性规划 问题
- 资源描述:
-
1、考点规范练32二元一次不等式(组)与简单的线性规划问题基础巩固1.若点(1,b)在两条平行直线6x-8y+1=0和3x-4y+5=0 之间,则b应取的整数值为()A.2B.1C.3D.0答案:B解析:由题意知(6-8b+1)(3-4b+5)0,即b-78(b-2)0,解得78b0)取得最大值的最优解有无穷多个,则a的值是()A.32B.12C.2D.52答案:B解析:直线y=-ax+z(a0)的斜率为-a0)的最小值为()A.0B.aC.2a+1D.-1答案:D解析:由约束条件x0,x-2y0,yx-1作出可行域(阴影部分),如图.化目标函数z=ax+y(a0)为y=-ax+z,由图可知,当直
2、线y=-ax+z过点A(0,-1)时,直线在y轴上的截距最小,z有最小值为-1.6.若直线y=2x上存在点(x,y)满足约束条件x+y-30,x-2y-30,xm,则实数m的最大值为()A.-1B.1C.32D.2答案:B解析:可行域如图阴影所示,由y=2x,x+y-3=0,得交点A(1,2),当直线x=m经过点A(1,2)时,m取到最大值为1.7.已知实数x,y满足条件x2,x+y4,-2x+y+c0,若目标函数z=3x+y的最小值为5,则其最大值为.答案:10解析:画出x,y满足的可行域(阴影部分),如下图,可得直线x=2与直线-2x+y+c=0的交点A,使目标函数z=3x+y取得最小值5
3、,故由x=2,-2x+y+c=0,解得x=2,y=4-c,代入3x+y=5得6+4-c=5,即c=5.由x+y=4,-2x+y+5=0,得B(3,1).当过点B(3,1)时,目标函数z=3x+y取得最大值,最大值为10.8.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A原料不超过13吨、B原料不超过18吨,则该企业可获得的最大利润是万元.答案:27解析:设生产甲产品x吨、乙产品y吨,则获得的利润为z=5x+3y.由题意得x0,y0,3x+y
4、13,2x+3y18,此不等式组表示的平面区域(阴影部分),如图所示.由图可知当y=-53x+z3经过点A时,z取得最大值,此时x=3,y=4,zmax=53+34=27(万元).9.已知实数x,y满足x-2y+40,2x+y-20,3x-y-30,则x2+y2的取值范围是.答案:45,13解析:画出约束条件对应的可行域(如图中阴影部分所示),x2+y2表示原点到可行域中的点的距离的平方,由图知原点到直线2x+y-2=0的距离的平方为x2+y2的最小值,为252=45,原点到点(2,3)的距离的平方为x2+y2的最大值,为22+32=13.因此x2+y2的取值范围是45,13.能力提升10.已
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-717053.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
