2022版新教材高考数学一轮复习 课时规范练37 空间向量及其运算(含解析)新人教B版.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022版新教材高考数学一轮复习 课时规范练37 空间向量及其运算含解析新人教B版 2022 新教材 高考 数学 一轮 复习 课时 规范 37 空间 向量 及其 运算 解析 新人
- 资源描述:
-
1、课时规范练37空间向量及其运算基础巩固组1.(2020江西南昌八一中学质检)已知向量a=(-2,x,2),b=(2,1,2),c=(4,-2,1).若a(b-c),则x的值为()A.-2B.2C.3D.-32.在下列条件中,使M与A,B,C一定共面的是()A.OM=OA-OB-OCB.OM=15OA+13OB+12OCC.MA+MB+MC=0D.OM+OA+OB+OC=03.(多选)给出下列命题,其中正确命题有()A.空间任意三个不共面的向量都可以作为一个基底B.已知向量ab,则a,b与任何向量都能构成空间的一个基底C.A,B,M,N是空间四点,若BA,BM,BN不能构成空间的一个基底,那么A
2、,B,M,N共面D.已知向量a,b,c是空间的一个基底,若m=a+c,则a,b,m也是空间的一个基底4.下列向量与向量a=(1,-2,1)共线的单位向量为()A.-12,-22,-12B.-12,-22,12C.-12,22,-12D.12,22,125.(多选)已知点P是ABC所在的平面外一点,若AB=(-2,1,4),AP=(1,-2,1),AC=(4,2,0),则()A.APABB.APBPC.BC=53D.APBC6.(2020四川三台中学实验学校高三月考)如图,设OA=a,OB=b,OC=c,若AN=NB,BM=2MC,则MN=()A.12a+16b-23cB.-12a-16b+23
3、cC.12a-16b-13cD.-12a+16b+13c7.若a=(2,-3,5),b=(-3,1,2),则|a-2b|=()A.72B.52C.310D.638.(多选)已知向量a=(1,-1,m),b=(-2,m-1,2),则下列结论中正确的是()A.若|a|=2,则m=2B.若ab,则m=-1C.不存在实数,使得a=bD.若ab=-1,则a+b=(-1,-2,-2)9.已知a=(3,2-1,1),b=(+1,0,2).若ab,则=;若ab,则+=.10.(2020上海七宝中学期末)在正方体ABCD-A1B1C1D1中,给出下面四个命题:(A1A+A1D1+A1B1)2=3(A1A)2;A
4、D1与A1B夹角为120;A1CC1D=0;正方体的体积是|ABBCCC1|,则所有正确的命题的序号是.11.如图,在长方体ABCD-A1B1C1D1中,O为AC的中点.(1)化简:A1O-12AB-12AD;(2)设E是棱DD1上的点,且DE=23DD1,若EO=xAB+yAD+zAA1,试求实数x,y,z的值.综合提升组12.已知向量a,b,c是空间向量的一个基底,向量a+b,a-b,c是空间向量的另外一个基底,若一向量p在基底a,b,c下的坐标为(1,2,3),则向量p在基底a+b,a-b,c下的坐标为()A.12,32,3B.32,-12,3C.3,-12,32D.-12,32,313
5、.已知空间直角坐标系O-xyz中,OA=(1,2,3),OB=(2,1,2),OP=(1,1,2),点Q在直线OP上运动,则当QAQB取得最小值时,点Q的坐标为()A.12,34,13B.12,32,34C.43,43,83D.43,43,7314.(2020山东烟台高三期末)如图所示的平行六面体ABCD-A1B1C1D1中,已知AB=AA1=AD,BAD=DAA1=60,BAA1=30,N为A1D1上一点,且A1N=A1D1.若BDAN,则的值为;若M为棱DD1的中点,BM平面AB1N,则的值为.创新应用组15.如图,在四棱锥P-ABCD中,PA底面ABCD,ADDC,ABDC,AD=DC=
6、AP=2,AB=1,点E为棱PC的中点.(1)证明:BEPD;(2)若F为棱PC上一点,满足BFAC,求线段PF的长.参考答案课时规范练37空间向量及其运算1.Ab-c=(-2,3,1),a(b-c)=4+3x+2=0,解得x=-2.故选A.2.CM与A,B,C一定共面的充要条件是OM=xOA+yOB+zOC,x+y+z=1,对于A选项,由于1-1-1=-11,所以不能得出M,A,B,C共面;对于B选项,由于15+13+121,所以不能得出M,A,B,C共面;对于C选项,由于MA=-MB-MC,则MA,MB,MC为共面向量,所以M,A,B,C共面;对于D选项,由OM+OA+OB+OC=0,得O
7、M=-OA-OB-OC,而-1-1-1=-31,所以不能得出M,A,B,C共面.故选C.3.ACD选项A,根据空间基底的概念,可得任意三个不共面的向量都可以作为一个空间基底,所以A正确;选项B,根据空间基底的概念,可得B不正确;选项C,由BA,BM,BN不能构成空间的一个基底,可得BA,BM,BN共面,又由BA,BM,BN过相同点B,可得A,B,M,N四点共面,所以C正确;选项D,由a,b,c是空间的一个基底,则基向量a,b与向量m=a+c一定不共面,所以可以构成空间另一个基底,所以D正确.故选ACD.4.C由|a|=1+2+1=2,与向量a共线的单位向量为12,-22,12或-12,22,-
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-728833.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
中级主管药师(专业知识)-试卷27.pdf
