2021高考数学(江苏专用)一轮复习学案:第八章 微专题八 圆锥曲线中性质的推广 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021高考数学江苏专用一轮复习学案:第八章 微专题八 圆锥曲线中性质的推广 WORD版含解析 2021 高考 数学 江苏 专用 一轮 复习 第八 专题 圆锥曲线 性质 推广 WORD 解析
- 资源描述:
-
1、微专题八圆锥曲线中性质的推广真题研究一道解析几何试题的命题背景可能就是圆锥曲线的一个性质定理的特殊情况如果掌握了定理的原理,也就把握了试题的本质对一些典型的试题,不应满足于会解,可以引导学生深入探究试题背后的知识背景,挖掘问题的本质这样才能真正找到解决问题的方法,学会用更高观点去看待数学问题,把握问题的本质一、试题展示题1(2018全国)如图1所示,设抛物线C:y22x,点A(2,0),B(2,0),过点A的直线l与C交于M,N两点(1)当l与x轴垂直时,求直线BM的方程;(2)证明:ABMABN.(1)解当l与x轴垂直时,l的方程为x2,可得点M的坐标为(2,2)或(2,2)所以直线BM的方
2、程为yx1或yx1.即x2y20或x2y20.(2)证明当l与x轴垂直时,AB为MN的垂直平分线,所以ABMABN.当l与x轴不垂直时,设l的方程为yk(x2)(k0),M(x1,y1),N(x2,y2),则x10,x20.由得ky22y4k0,显然方程有两个不等实根所以y1y2,y1y24.直线BM,BN的斜率之和kBMkBN.将x12,x22及y1y2,y1y2的表达式代入式分子,可得x2y1x1y22(y1y2)0.所以kBMkBN0,可知BM,BN的倾斜角互补,所以ABMABN.综上,ABMABN.题2(2018全国)设椭圆C:y21的右焦点为F,过F的直线l与C交于A,B两点,点M的
3、坐标为(2,0)(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:OMAOMB.(1)解由已知得F(1,0),l的方程为x1.由已知可得,点A的坐标为或.又M(2,0),所以直线AM的方程为yx或yx.即xy20或xy20.(2)证明当l与x轴重合时,OMAOMB0.当l与x轴垂直时,OM为AB的垂直平分线,所以OMAOMB.当l与x轴不重合也不垂直时,设l的方程为yk(x1)(k0),A(x1,y1),B(x2,y2),则x1,x20恒成立,所以x1x2,x1x2.则2kx1x23k(x1x2)4k0,从而kMAkMB0,故MA,MB的倾斜角互补所以OMAOMB.综上,O
4、MAOMB.点评以上两题是2018年高考全国卷解析几何题的倒数第二题,是选拔题第(1)问根据直线方程的求法,多数学生都能完成,第(2)问是个探索性问题,重点考查用坐标法研究圆锥曲线中的定点定值问题,考查数形结合、函数方程、分类讨论等基本数学思想,同时考查综合运用所学数学知识分析问题和解决问题的能力,综合考查学生的运算能力和数学素养本题的呈现形式“平易近人”,是平面几何中的角平分线问题,但本题的解决过程却充分体现了坐标法的思想,可以将等角的几何关系式转化为坐标代数关系式,然后再用坐标法来处理本题看起来很平常,实际上却背景丰富,有一定难度和区分度,也有很大的数学价值和研究空间,我们重点研究第二小问
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-632045.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
