分享
分享赚钱 收藏 举报 版权申诉 / 25

类型2022-2023学年人教版九年级数学上册期中测试试题 卷(Ⅲ)(含详解).docx

  • 上传人:a****
  • 文档编号:635239
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:25
  • 大小:429.37KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022-2023学年人教版九年级数学上册期中测试试题 卷含详解 2022 2023 学年 人教版 九年级 数学 上册 期中 测试 试题 详解
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中测试试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,将绕点顺时针旋转得到,使点的对应点恰好落在边上,点的对应点为,连

    2、接下列结论一定正确的是()ABCD2、已知学校航模组设计制作的火箭升空高度h(m)与飞行时间t(s)满足函数表达式ht224t1,则下列说法中正确的是()A点火后1s和点火后3s的升空高度相同B点火后24s火箭落于地面C火箭升空的最大高度为145mD点火后10s的升空高度为139m3、若关于x的二次函数yax2+bx的图象经过定点(1,1),且当x1时y随x的增大而减小,则a的取值范围是()ABCD4、关于x的方程有两个实数根,且,那么m的值为()ABC或1D或45、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD二、多选题(5小题,每小题4分,共计20分)1、下列图案中,是中心对称

    3、图形的是()ABCD2、下列方程中含有一次项的是()ABCD3、二次函数y=ax2+bx+c(a0)的图象如图所示,则下列说法中正确的有() 线 封 密 内 号学级年名姓 线 封 密 外 Aabc0B2a+b=0C9a+3b+c0D当1x3时,y0E当x0时,y随x的增大而减小4、若二次函数(a是不为0的常数)的图象与x轴交于A、B两点则以下结论正确的有()AB当时,y随x的增大而增大C无论a取任何不为0的数,该函数的图象必经过定点D若线段AB上有且只有5个横坐标为整数的点,则a的取值范围是5、如图,抛物线y=ax2+bx+c的对称轴是x=1且过点(,0),则下列结论中正确的结论是()Aabc

    4、0Ba2b+4c=0C25a10b+4c=0D3b+2c0Eabm(amb)第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如果关于的一元二次方程有实数根,那么的取值范围是_2、如图,ABC和DEC关于点C成中心对称,若AC1,AB2,BAC90,则AE的长是_3、试写出一个二次函数关系式,使它对应的一元二次方程的一个根为0,另一个根在1到2之间:_4、抛物线的图象和轴有交点,则的取值范围是_5、如图,平行四边形ABCD中,点的坐标是,以点为顶点的抛物线经过轴上的点A,B,则此抛物线的解析式为_四、解答题(5小题,每小题8分,共计40分)1、某厂家生产一批遮阳伞,每个遮

    5、阳伞的成本价是20元,试销售时发现:遮阳伞每天的销售量y(个)与销售单价x(元)之间是一次函数关系,当销售单价为28元时,每天的销售量为260个;当销售单价为30元时,每天的销售量为240个(1)求遮阳伞每天的销出量y(个)与销售单价x(元)之间的函数关系式;(2)设遮阳伞每天的销售利润为w(元),当销售单价定为多少元时,才能使每天的销售利润最大?最 线 封 密 内 号学级年名姓 线 封 密 外 大利润是多少元?2、已知关于x的一元二次方程x2+xm=0(1)设方程的两根分别是x1,x2,若满足x1+x2=x1x2,求m的值(2)二次函数y=x2+xm的部分图象如图所示,求m的值3、根据下列条

    6、件,求二次函数的解析式(1)图象经过(0,1),(1,2),(2,3)三点;(2)图象的顶点(2,3),且经过点(3,1);4、某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(t)之间的关系为m500.2x,销售价y(万元/t)与原料的质量x(t)之间的关系如图所示(1)求y与x之间的函数关系式;(2)设销售收入为P(万元),求P与x之间的函数关系式;(3)原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润销售收入总支出)5、在平面直角坐标系中,设二次函数(m是实数)(1)当时,若点

    7、在该函数图象上,求n的值(2)小明说二次函数图象的顶点在直线上,你认为他的说法对吗?为什么?(3)已知点,都在该二次函数图象上,求证:-参考答案-一、单选题1、D【解析】【分析】利用旋转的性质得AC=CD,BC=EC,ACD=BCE,所以选项A、C不一定正确再根据等腰三角形的性质即可得出,所以选项D正确;再根据EBC=EBC+ABC=A+ABC=-ACB判断选项B不一定正确即可【详解】解:绕点顺时针旋转得到,AC=CD,BC=EC,ACD=BCE,A=CDA=;EBC=BEC=,选项A、C不一定正确, 线 封 密 内 号学级年名姓 线 封 密 外 A =EBC,选项D正确EBC=EBC+ABC

    8、=A+ABC=-ACB不一定等于,选项B不一定正确;故选D【考点】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了等腰三角形的性质2、C【解析】【分析】分别求出t=1、3、24、10时h的值可判断A、B、D三个选项,将解析式配方成顶点式可判断C选项【详解】解:A、当t=1时,h=24;当t=3时,h=64;所以点火后1s和点火后3s的升空高度不相同,此选项错误;B、当t=24时,h=10,所以点火后24s火箭离地面的高度为1m,此选项错误;C、由ht224t1=(t-12)2+145知火箭升空的最大高度为145m,此选项正

    9、确;D、当t=10时,h=141m,此选项错误;故选:C【考点】本题主要考查二次函数的应用,解题的关键是熟练掌握二次函数的性质3、D【解析】【分析】根据题意开口向上,且对称轴1,ab1,即可得到1,从而求解【详解】由二次函数yax2+bx可知抛物线过原点,抛物线定点(1,1),且当x-1时,y随x的增大而减小,抛物线开口向上,且对称轴1,ab1,a0,b1a,1,故选:D【考点】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,根据题意得关于a的不等式组是解题的关键4、A 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】通过根与系数之间的关系得到,由可求出m的值,通

    10、过方程有实数根可得到,从而得到m的取值范围,确定m的值【详解】解:方程有两个实数根,整理得,解得,若使有实数根,则,解得,所以,故选:A【考点】本题考查了一元二次方程根与系数之间的关系和跟的判别式,注意使一元二次方程有实数根的条件是解题的关键5、B【解析】【分析】利用轴对称图形和中心对称图形的定义逐项判断即可【详解】A是轴对称图形不是中心对称图形故A不符合题意B是轴对称图形也是中心对称图形故B符合题意C是轴对称图形但不是中心对称图形故C不符合题意D不是中心对称图形也不是轴对称图形故D不符合题意故选:B【考点】本题考查轴对称图形和中心对称图形的定义,根据选项灵活判断其图形是否符合题意是解本题的关

    11、键二、多选题1、ABD【解析】【分析】在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形与另一个图形重合,这个图形就是中心对称图形,根据定义判断即可【详解】、是中心对称图形,选项正确;B、是中心对称图形,选项正确;C、不是中心对称图形,选项错误;D、是中心对称图形,选项正确 线 封 密 内 号学级年名姓 线 封 密 外 故选:ABD【点睛】本题考查中心对称图形的定义,牢记定义是解题关键2、ABC【解析】【分析】根据一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a0)在一般形式中ax2叫二次项,bx叫一次项,c是常数项其中a,b,c分别叫二次项系数,一次项系数,常数项

    12、【详解】解:A、化为一元二次方程的一般形式为:3x2-2x-5=0,一次项为-2x;B、化为一元二次方程的一般形式为:9x2-16x=0,一次项为-16x;C、化为一元二次方程的一般形式为:x2-7x=0;一次项为-7x;D、化为一元二次方程的一般形式为:x2-25=0,不含一次项故选:ABC【点睛】本题考查了一元二次方程的一般形式,注意:找项和项的系数时,带着前面的符号3、BDE【解析】【分析】A由抛物线的开口方向向下,与y轴交点在负半轴,对称轴在y轴右侧,确定出a,b及c的正负,即可对于abc的正负作出判断;B.函数图象的对称轴为:x=-=1,所以b=-2a,即2a+b=0;C.根据抛物线

    13、与x轴的交点即可求得抛物线的对称轴,然后把x=3代入方程即可求得相应的y的符号;D.由图象得到函数值小于0时,x的范围即可作出判断;E.由图象得到当x0时,y随x的变化而变化的趋势【详解】解:根据图示知,抛物线开口方向向上,抛物线与y轴交与负半轴,对称轴在y轴右侧,则a0,c0,b0,所以abc0故A错误;根据图象得对称轴x=1,即-=1,所以b=-2a,即2a+b=0,故B正确;当x=3时,y=0,即9a+3b+c=0故C错误;根据图示知,当-1x3时,y0,故D正确;根据图示知,当x0时,y随x的增大而减小,故E正确;故选BDE【点睛】本题考查了二次函数图象与系数的关系二次函数y=ax2+

    14、bx+c(a0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定4、ACD【解析】【分析】求得顶点坐标,根据题意即可判断正确;根据二次函数的性质即可判断错误;二次函数是不为0的常数)的顶点,即可判断错误;根据题意时,时,即可判断正确【详解】解:二次函数,顶点为,在轴的下方, 线 封 密 内 号学级年名姓 线 封 密 外 函数的图象与轴交于、两点,抛物线开口向上,故正确;时,随的增大而增大,故错误;由题意可知当,二次函数是不为0的常数)的图象一定经过点,故正确;线段上有且只有5个横坐标为整数的点,且对称轴为直线,当时,当时,解得,故正确;故选:ACD【点睛】本题考查

    15、了二次函数的性质,二次函数图象与系数的关系,二次函数图象上点的坐标特征,能够理解题意,利用二次函数的性质解答是解题的关键5、ACE【解析】【分析】抛物线开口向下,a0,对称轴为,0,抛物线与y轴交于y轴正半轴,c0,可判断选项A;抛物线过点(,0),可判断选项B;抛物线与x轴另一交点为(-),代入可得,可判断选项C;由,可得,可判断选项D;a0,抛物线开口向下,抛物线有最大值,当x=-1时,y最大=,任意以点(-m,y)在抛物线上,y最大,即,可判断选项【详解】解:抛物线y=ax2+bx+c的对称轴是x=1且过点(,0),抛物线与x轴另一交点为(-),抛物线开口向下,a0,对称轴为,0,抛物线

    16、与y轴交于y轴正半轴,c0,a、b、c中两负一正,abc0,故选项A正确;抛物线过点(,0),即,故选项B不正确;抛物线与x轴另一交点为(-),即,故选项C正确; 线 封 密 内 号学级年名姓 线 封 密 外 ,故选项不正确;a0,抛物线开口向下,抛物线有最大值,当x=-1时,y最大=,任意以点(-m,y)在抛物线上,y最大,即,故选择正确;正确的结论是ACE故选择ACE【点睛】本题考查抛物线性质,确定抛物线各项系数符号,与两轴交点坐标,函数最大值,关键是利用以上信息确定代数式的符号与值,比较大小三、填空题1、【解析】【分析】由一元二次方程根与系数的关键可得: 从而列不等式可得答案【详解】解:

    17、 关于的一元二次方程有实数根, 故答案为:【考点】本题考查的是一元二次方程根的判别式,掌握一元二次方程根的判别式是解题的关键2、2【解析】【分析】根据中心对称的性质AD=DE及D=90,由勾股定理即可求得AE的长【详解】DEC与ABC关于点C成中心对称,ABCDEC,ABDE2,ACDC1,DBAC90,AD2,D90,AE, 线 封 密 内 号学级年名姓 线 封 密 外 故答案为【考点】本题考查了中心对称的性质,勾股定理等知识,关键中心对称性质的应用3、【解析】【分析】由一元二次方程的一个根为0,另一个根在1到2之间,可设两个根分别为0和,即可得此一元二次方程是:,继而求得答案【详解】解:一

    18、元二次方程的一个根为0,另一个根在1到2之间,设两个根分别为0和,此一元二次方程是:,二次函数关系式为:,故答案为【考点】此题考查了一元二次方程根与系数的关系以及二次函数与一元二次方程的关系此题难度适中,注意掌握二次函数与一元二次方程的关系是关键4、且【解析】【分析】由题意知,计算求解即可【详解】解:由题意知,解得故答案为:且【考点】本题考查了二次函数与轴的交点个数解题的关键在于熟练掌握二次函数与轴的交点个数5、【解析】【分析】根据平行四边形的性质得到CD=AB=4,即C点坐标为,进而得到A点坐标为,B点坐标为,利用待定系数法即可求得函数解析式【详解】四边形ABCD为平行四边形CD=AB=4C

    19、点坐标为A点坐标为,B点坐标为设函数解析式为,代入C点坐标有解得 线 封 密 内 号学级年名姓 线 封 密 外 函数解析式为,即故答案为【考点】本题考查了平行四边形的性质,和待定系数法求二次函数解析式,问题的关键是求出A点或B点的坐标四、解答题1、 (1)y10x+540;(2)当销售单价定为37元时,才能使每天的销售利润最大,最大利润是2890元【解析】【分析】(1)设函数关系式为ykx+b,由销售单价为28元时,每天的销售量为260个;销售单价为30元时,每天的销量为240个;列方程组求解即可;(2)由每天销售利润每个遮阳伞的利润销售量,列出函数关系式,再由二次函数的性质求解即可;(1)解

    20、:设一次函数关系式为ykx+b,由题意可得:,解得:,函数关系式为y10x+540;(2)解:由题意可得:w(x20)y(x20)(10x+540)10(x37)2+2890,100,二次函数开口向下,当x37时,w有最大值为2890,答:当销售单价定为37元时,才能使每天的销售利润最大,最大利润是2890元【点睛】本题考查了一次函数和二次函数的实际应用,待定系数法求解析式,掌握二次函数的性质是解题的关键2、 (1)(2)【解析】【分析】(1)根据根与系数的关系求得x1+x2、x1x2,然后代入列出方程,通过解方程来求m的值;(2)把点(1,0)代入抛物线解析式,求得m的值(1)解:由题意得:

    21、x1+x2=-1,x1x2=-m,-1=-mm=1当m=1时,x2+x-1=0,此时=1+4m=1+4=50,符合题意m=1;(2)解:图象可知:过点(1,0),当x=1,y=0,代入y=x2+x-m,得12+1-m=0 线 封 密 内 号学级年名姓 线 封 密 外 m=2【点睛】本题主要考查了抛物线与x轴的交点,根与系数的关系,解题的关键是掌握如果x1,x2是一元二次方程ax2+bx+c=0的两根,那么有x1+x2=-,x1x2=3、(1)y4x27x+1;(2)y2(x2)2+3【解析】【分析】(1)先设出抛物线的解析式为yax2+bx+c,再将点(0,1),(1,2),(2,3)代入解析

    22、式中,即可求得抛物线的解析式;(2)由于已知抛物线的顶点坐标,则可设顶点式ya(x2)23,然后把(3,1)代入求出a的值即可【详解】解:(1)设出抛物线的解析式为yax2+bx+c,将(0,1),(1,2),(2,3)代入解析式,得:,解得:,抛物线解析式为:y4x27x+1;(2)设抛物线解析式为ya(x2)2+3,把(3,1)代入得:a(32)2+31,解得a2,所以抛物线解析式为y2(x2)2+3【点睛】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知

    23、抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解4、(1);(2);(3)原料的质量为24吨时,所获销售利润最大,最大销售利润是万元【解析】【分析】(1)利用待定系数法求函数关系式;(2)根据销售收入销售价销售量列出函数关系式;(3)设销售总利润为W,根据销售利润销售收入原料成本加工费列出函数关系式,然后根据二次函数的性质分析其最值【详解】解:(1)设y与x之间的函数关系式为,将(20,15),(30,12.5)代入,可得:,解得:,y与x之间的函数关系式为;(2)设销售收入为P(万元),P与x之间的函数关系式为; 线 封 密 内 号学级年名姓 线 封 密 外 (3)设销售总利润为W,

    24、整理,可得:,0,当时,W有最大值为,原料的质量为24吨时,所获销售利润最大,最大销售利润是万元【点睛】本题考查了二次函数的实际应用,涉及了数形结合的数学思想,熟练掌握待定系数法求解析式是解决本题的关键5、 (1)-7(2)对,理由见解析(3)见解析【解析】【分析】(1)把m=2,点A(8,n)代入解析式即可求解;(2)由抛物线解析式,得顶点是,把x2m代入,求出y值与3-m比较,若相等则即可判断小明说法正确,否则说法错误;(3)由点P(a+1,c),Q(4m-5+a,c)的纵坐标相同,即可求得对称轴为直线x=a+2m-2,即可得出a+2m-2=2m,求得a=2,得到P(3,c),代入解析式即可得到 ,根据二次函数的性质即可证得结论(1)解:当m2时,A(8,n)在函数图象上,(2)解:由题意得,顶点是当x2m时,顶点在直线上(3)证明:P(a+1,c),Q(4m-5+a,c)都在二次函数的图象上对称轴是直线a+2m-22m ,a2,P(3,c),把P(3,c)代入抛物线解析式,得,-20,c有最大值为,c【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,熟练掌握二次函数的性质是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年人教版九年级数学上册期中测试试题 卷(Ⅲ)(含详解).docx
    链接地址:https://www.ketangku.com/wenku/file-635239.html
    相关资源 更多
  • 专题24 与二次函数相关的压轴题-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版).docx专题24 与二次函数相关的压轴题-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版).docx
  • 专题24 三角函数中的化简求值(教师版).docx专题24 三角函数中的化简求值(教师版).docx
  • 专题24 、25估算题和电路设计电路动态变化-2021年全国中考物理真题专项汇编(第一期)(解析版).docx专题24 、25估算题和电路设计电路动态变化-2021年全国中考物理真题专项汇编(第一期)(解析版).docx
  • 专题24 unit 12 易错综合练习-2021-2022学年七年级下册单元重难点易错题精练(人教版).docx专题24 unit 12 易错综合练习-2021-2022学年七年级下册单元重难点易错题精练(人教版).docx
  • 专题24直线的方程-【中职专用】中职高考数学二轮复习专项突破.docx专题24直线的方程-【中职专用】中职高考数学二轮复习专项突破.docx
  • 专题24正弦定理和余弦定理-2021年新高考数学基础考点一轮复习.docx专题24正弦定理和余弦定理-2021年新高考数学基础考点一轮复习.docx
  • 专题24复数及推理与证明【多选题】(解析版).docx专题24复数及推理与证明【多选题】(解析版).docx
  • 专题24复数及推理与证明【多选题】(原卷版).docx专题24复数及推理与证明【多选题】(原卷版).docx
  • 专题23锐角三角函数-2021年中考数学真题分项汇编(原卷版)【全国通用】(第02期).docx专题23锐角三角函数-2021年中考数学真题分项汇编(原卷版)【全国通用】(第02期).docx
  • 专题23概率统计与图论(教师版含解析)-备战2021年高中数学联赛之历年真题汇编(1981-2020).docx专题23概率统计与图论(教师版含解析)-备战2021年高中数学联赛之历年真题汇编(1981-2020).docx
  • 专题23概率统计与图论(学生版)-备战2021年高中数学联赛之历年真题汇编(1981-2020).docx专题23概率统计与图论(学生版)-备战2021年高中数学联赛之历年真题汇编(1981-2020).docx
  • 专题23实验:探究加速度与物体受力、物体质量的关系.docx专题23实验:探究加速度与物体受力、物体质量的关系.docx
  • 专题23函数与矩形存在性问题-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(解析版).docx专题23函数与矩形存在性问题-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(解析版).docx
  • 专题23函数与矩形存在性问题-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(原卷版).docx专题23函数与矩形存在性问题-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(原卷版).docx
  • 专题23二面角、面面角大题专练B卷-2023届高三数学二轮专题复习.docx专题23二面角、面面角大题专练B卷-2023届高三数学二轮专题复习.docx
  • 专题23二次函数推理计算与证明综合问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(解析版).docx专题23二次函数推理计算与证明综合问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(解析版).docx
  • 专题23二次函数推理计算与证明综合问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx专题23二次函数推理计算与证明综合问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx
  • 专题23《不规则物体体积算法》2020-2021学年小升初数学真题汇编专项复习训练(全国通用).docx专题23《不规则物体体积算法》2020-2021学年小升初数学真题汇编专项复习训练(全国通用).docx
  • 专题23 相似形.docx专题23 相似形.docx
  • 专题23 实验:探究加速度与力、质量的关系.docx专题23 实验:探究加速度与力、质量的关系.docx
  • 专题23.6 解直角三角形章末九大题型总结(拔尖篇)(沪科版)(解析版).docx专题23.6 解直角三角形章末九大题型总结(拔尖篇)(沪科版)(解析版).docx
  • 专题23.6 解直角三角形章末九大题型总结(拔尖篇)(沪科版)(原卷版).docx专题23.6 解直角三角形章末九大题型总结(拔尖篇)(沪科版)(原卷版).docx
  • 专题23.4 解直角三角形章末拔尖卷(沪科版)(解析版).docx专题23.4 解直角三角形章末拔尖卷(沪科版)(解析版).docx
  • 专题23.4 解直角三角形章末拔尖卷(沪科版)(原卷版).docx专题23.4 解直角三角形章末拔尖卷(沪科版)(原卷版).docx
  • 专题23.3 构造直角三角形解题四大题型(沪科版)(解析版).docx专题23.3 构造直角三角形解题四大题型(沪科版)(解析版).docx
  • 专题23.2 解直角三角形【十大题型】(举一反三)(沪科版)(解析版).docx专题23.2 解直角三角形【十大题型】(举一反三)(沪科版)(解析版).docx
  • 专题23.2 解直角三角形【十大题型】(举一反三)(沪科版)(原卷版).docx专题23.2 解直角三角形【十大题型】(举一反三)(沪科版)(原卷版).docx
  • 专题23-申请信.docx专题23-申请信.docx
  • 专题23 阅读理解 议论文 - 2023年中考英语语法题型总复习宝典.docx专题23 阅读理解 议论文 - 2023年中考英语语法题型总复习宝典.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1