2022-2023学年北师大版八年级数学上册第一章勾股定理单元测评试题(详解).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 北师大 八年 级数 上册 第一章 勾股定理 单元 测评 试题 详解
- 资源描述:
-
1、北师大版八年级数学上册第一章勾股定理单元测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在77的正方形网格中,每个小正方形的边长为1,画一条线段AB=,使点A,B在小正方形的顶点上,设AB与网格
2、线相交所成的锐角为,则不同角度的有()A1种B2种C3种D4种2、勾股定理是“人类最伟大的十个科学发现之一”我国对勾股定理的证明是由汉代的赵爽在注解周髀算经时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽下列图案中是“赵爽弦图”的是()ABCD3、如图,在22的正方形网格中有9个格点,已经取定点A和B,在余下的点中任取一点C,使ABC为直角三角形的概率是()ABCD4、在中,的对边分别是a,b,c,若,则的面积是()ABCD5、观察“赵爽弦图”(如图),若图中四个全等的直角三角形的两直角边分别为a,b,根据图中图形面积之间的关系及勾股定理,可
3、直接得到等式()ABCD6、 “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为()A3B4C5D67、以下列各组数的长为边作三角形,不能构成直角三角形的是()A3,4,5B4,5,6C6,8,10D9,12,158、如图,把长方形纸条ABCD沿EF,GH同时折叠,B,C两点恰好落在AD边的P点处,若FPH90,PF8,PH6,则长方形ABCD的边BC的长为( ) A20B22C24D309、在直角三角形中
4、,若勾为3,股为4,则弦为()A5B6C7D810、如图,OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且ABx轴,若AB=6,OA=OB=5,则点A的坐标是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,一艘轮船位于灯塔P的南偏东方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东方向上的B处,此时B处与灯塔P的距离为_海里(结果保留根号)2、有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度为_尺3、如图
5、所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A、B、C的面积分别是,则正方形D的面积是_4、等腰ABC中,AB=AC=10cm,BC=12cm,则BC边上的高是_cm5、如图,在ABC中,ACB=90,CDAB于点DE为线段BD上一点,连结CE,将边BC沿CE折叠,使点B的对称点B落在CD的延长线上若AB=10,BC=8,则ACE的面积为_三、解答题(5小题,每小题10分,共计50分)1、2020年春季“新冠肺炎”在武汉全面爆发,蔓延全国,危及到人民生命安全,为了积极响应国家防控政策,双流区某镇政府采用了移动宣讲的形式进行宣传防控措施,如图,
6、笔直公路的一侧点处有一村庄,村庄到公路的距离为600米,假设宣讲车周围1000米以内能听到广播宣传,宣讲车在公路上沿方向行驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200米/分钟,那么村庄总共能听到多长时间的宣传?2、如图是“弦图”的示意图,“弦图”最早是由三国时期的数学家赵爽在为周髀算经作注时给出的,它标志着中国古代的数学成就它由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形,每个直角三角形的两条直角边分别为a、b,斜边为c请你运用此图形证明勾股定理:a2+b2c23、某海上有一小岛,为了测量小岛两端A,B的距离,测量人员设计了一种测量方
7、法,如图,已知B是CD的中点,E是BA延长线上的一点,且CED90,测得AE16.6海里,DE60海里,CE80海里(1)求小岛两端A,B的距离(2)过点C作CFAB交AB的延长线于点F,求值4、一架梯子长13米,斜靠在一面墙上,梯子底端离墙5米(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了7米到C,那么梯子的底端在水平方向滑动了几米?5、勾股定理是人类最伟大的十个科学发现之一,在周髀算经中就有“若勾三,股四,则弦五”的记载,汉代数学家赵爽为证明勾股定理创制的“赵爽弦图”也流传至今迄今为止已有多种证明勾股定理的方法下面是数学课上创新小组验证过程的一部分请认真阅读并根据他们的思路将
8、后续的过程补充完整:将两张全等的直角三角形纸片按图所示摆放,其中,点 在线段上,点在边两侧,试证明: -参考答案-一、单选题1、C【解析】【详解】如图,(1)当AB=时,AB与网格线相交所成的两个锐角:=45;(2)当AB=时,AB与网格线相交所成的锐角有2个不同的角度;综上所述,AB与网格线相交所成的锐角的不同角度有3个.故选C.2、B【解析】【分析】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形【详解】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示:故选B.【考点】本题主要考查了勾股定理的证明,证明勾股定理时,用几个全等的直角三角形
9、拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理3、C【解析】【分析】找到可以组成直角三角形的点,根据概率公式解答即可【详解】解:如图,均可与点和组成直角三角形,故选:C【考点】本题考查了概率公式,解题的关键是掌握如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A)4、A【解析】【分析】根据题意可知,的面积为,结合已知条件,根据完全平方公式变形求值即可【详解】解:中,所对的边分别为a,b,c,故A正确故选:A【考点】本题主要考查了勾股定理,完全平方公式变形求值,解题的关键是将完全平方公式变形求出ab的值5、C【解析】【分析】
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-637548.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2021高考英语北师大版(豫皖)新素养备考大一轮课件:BOOK 1 UNIT 1 .pptx
