分享
分享赚钱 收藏 举报 版权申诉 / 22

类型2022-2023学年度人教版八年级数学上册第十三章轴对称定向攻克试卷(含答案详解版).docx

  • 上传人:a****
  • 文档编号:641760
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:22
  • 大小:486.98KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 度人 八年 级数 上册 第十三 轴对称 定向 攻克 试卷 答案 详解
    资源描述:

    1、人教版八年级数学上册第十三章轴对称定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在的正方形网格中有两个格点A、B,连接,在网格中再找一个格点C,使得是等腰直角三角形,满足条件的格点C的个数

    2、是()A2B3C4D52、如图,有一张直角三角形纸片,两直角边AC5 cm,BC10 cm,将ABC折叠,使点B与点A重合,折痕为DE,则ACD的周长为()A10cmB12cmC15cmD20cm3、下列图形中,是轴对称图形的是()ABCD4、给出下列命题,正确的有()个等腰三角形的角平分线、中线和高重合; 等腰三角形两腰上的高相等; 等腰三角形最小边是底边;等边三角形的高、中线、角平分线都相等;等腰三角形都是锐角三角形A1个B2个C3个D4个5、以下四大通讯运营商的企业图标中,是轴对称图形的是()ABCD6、如图,ABC和ECD都是等腰直角三角形,ABC的顶点A在ECD的斜边DE上下列结论:

    3、ACEBCD;DABACE;AE+ACCD;ABD是直角三角形其中正确的有()A1个B2个C3个D4个7、下列三角形中,等腰三角形的个数是()A4个B3个C2个D1个8、将三角形纸片()按如图所示的方式折叠,使点C落在边上的点D,折痕为已知,若以点B、D、F为顶点的三角形与相似,那么的长度是()A2B或2CD或29、如图,等边的顶点,规定把等边“先沿轴翻折,再向左平移1个单位”为一次变换,这样连续经过2021次变换后,顶点C的坐标为()ABCD10、对于问题:如图1,已知AOB,只用直尺和圆规判断AOB是否为直角?小意同学的方法如图2:在OA、OB上分别取C、D,以点C为圆心,CD长为半径画弧

    4、,交OB的反向延长线于点E,若测量得OE=OD,则AOB=90.则小意同学判断的依据是()A等角对等边B线段中垂线上的点到线段两段距离相等C垂线段最短D等腰三角形“三线合一”第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、点P关于x轴对称点是,点P关于y轴对称点是,则_2、如图,在等腰直角三角形ABC中,BAC90,在BC上截取BDBA,作ABC的平分线与AD相交于点P,连接PC,若ABC的面积为2cm2,则BPC的面积为 _cm23、如图,在中,AB的垂直平分线MN交AC于D点,连接BD,则的度数是_4、如图,中,D,E分别是AC,AB上的点,BD与CE交于点O.给出

    5、下列三个条件:EBODCO;BEOCDO;BECD.上述三个条件中,哪两个条件可判定是等腰三角形(用序号写出一种情形):_ 5、如图,在中,垂直平分,点P为直线上一动点,则周长的最小值是_三、解答题(5小题,每小题10分,共计50分)1、如图,在中,边的垂直平分线分别交,于点.(1)求证:为的中点;(2)若,求的长.2、已知:如图,AD是等腰三角形ABC的底边BC上的中线,DEAB,交AC于点E求证:AED是等腰三角形3、如图,在四边形ABCD中,BD90,C60,AD1,BC2,求AB、CD的长4、如图,在平面直角坐标系中,已知线段AB;(1)请在y轴上找到点C,使ABC的周长最小,画出AB

    6、C,并写出点C的坐标;(2)作出ABC关于y轴对称的ABC;(3)连接BB,AA求四边形AABB的面积5、如图,在中,求和的度数-参考答案-一、单选题1、B【解析】【分析】根据题意,结合图形,分两种情况讨论:AB为等腰直角ABC底边;AB为等腰直角ABC其中的一条腰【详解】解:如图:分情况讨论:AB为等腰直角ABC底边时,符合条件的C点有0个;AB为等腰直角ABC其中的一条腰时,符合条件的C点有3个故共有3个点,故选:B【考点】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想2、C【解析】【分析】根据图形翻折变换的性质得出A

    7、D=BD,故AC+(CD+AD)=AC+BC,由此即可得出结论【详解】ADE由BDE翻折而成,AD=BDAC=5cm,BC=10cm,ACD的周长=AC+CD+AD=AC+BC=15cm故选C【考点】本题考查了翻折变换,熟知图形翻折不变性的性质是解答此题的关键3、D【解析】【分析】根据“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形”判断即可得【详解】解:根据题意,A、B、C选项中均不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;D选项能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对

    8、称图形;故选:D【考点】本题主要考查轴对称图形,解题的关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴4、B【解析】【详解】解:等腰三角形的顶角角平分线、底边上的中线和底边上的高重合,故本选项错误;等腰三角形两腰上的高相等,本选项正确; 等腰三角形最小边不一定底边,故本选项错误;等边三角形的高、中线、角平分线都相等,本选项正确;等腰三角形可以是钝角三角形,故本选项错误,故选B5、D【解析】【分析】根据轴对称图形的定义(在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形)进行判断即可得【详解】解:根据轴对称图形的定义判断可得:只有

    9、D选项符合题意,故选:D【考点】题目主要考查轴对称图形的判断,理解轴对称图形的定义是解题关键6、C【解析】【分析】根据等腰直角三角形的性质得到CACB,CABCBA45,CDCE,ECDE45,则可根据“SAS”证明ACEBCD,于是可对进行判断;利用三角形外角性质得到DAB+BACE+ACE,加上CABE45,则可得对进行判断;利用CECD和三角形三边之间的关系可对进行判断;根据ACEBCD得到BDCE45,则可对进行判断【详解】ABC和ECD都是等腰直角三角形,CACB,CABCBA45,CDCE,ECDE45,ACE+ACDACD+BCD,ACEBCD,在ACE和BCD中,ACEBCD(

    10、SAS),所以正确;DACE+ACE,即DAB+BACE+ACE,而CABE45,DABACE,所以正确;AE+ACCE,CECD,AE+ACCD,所以错误;ACEBCD,BDCE45,CDE45,ADBADC+BDC45+4590,ADB为直角三角形,所以正确故选:C【考点】本题是考查了全等三角形的判定和性质,等腰直角三角形的性质,直角三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质和等腰直角三角形的性质是解题的关键7、B【解析】【分析】根据题图所给信息,根据边或角分析即可【详解】解:第一个图形中有两边相等,故第一个三角形是等腰三角形, 第二个图形中的三个角分别为50,35,95,故

    11、第二个三角形不是等腰三角形;第三个图形中的三个角分别为100,40,40,故第三个三角形是等腰三角形;第四个图形中的三个角分别为90,45,45,故第四个三角形是等腰三角形;故答案为:B【考点】本题考查了等腰三角形的判定,掌握等腰三角形的判定是解题的关键8、B【解析】【分析】分两种情况:若或若,再根据相似三角形的性质解题【详解】沿折叠后点C和点D重合,设,则,以点B、D、F为顶点的三角形与相似,分两种情况:若,则,即,解得;若,则,即,解得综上,的长为或2,故选:B【考点】本题考查相似三角形的性质,是重要考点,掌握相关知识是解题关键9、D【解析】【分析】先求出点C坐标,第一次变换,根据轴对称判

    12、断出点C变换后在x轴下方然后求出点C纵坐标,再根据平移的距离求出点C变换后的横坐标,最后写出第一次变换后点C坐标,同理可以求出第二次变换后点C坐标,以此类推可求出第n次变化后点C坐标【详解】ABC是等边三角形AB=3-1=2点C到x轴的距离为1+,横坐标为2C(2,)由题意可得:第1次变换后点C的坐标变为(2-1,),即(1,),第2次变换后点C的坐标变为(2-2,),即(0,)第3次变换后点C的坐标变为(2-3,),即(-1,)第n次变换后点C的坐标变为(2-n,)(n为奇数)或(2-n,)(n为偶数),连续经过2021次变换后,等边的顶点的坐标为(-2019,),故选:D【考点】本题考查了

    13、利用轴对称变换(即翻折)和平移的特点求解点的坐标,在求解过程中找到规律是关键10、B【解析】【分析】由垂直平分线的判定定理,即可得到答案【详解】解:根据题意,CD=CE,OE=OD,AO是线段DE的垂直平分线,AOB=90;则小意同学判断的依据是:线段中垂线上的点到线段两段距离相等;故选:B【考点】本题考查了垂直平分线的判定定理,解题的关键是熟练掌握垂直平分线的判定定理进行判断二、填空题1、1【解析】【分析】根据关于坐标轴的对称点的坐标特征,求出a,b的值,即可求解【详解】点P关于x轴对称点是,P(a,-2),点P关于y轴对称点是,b=-2,a=3,1,故答案是:1【考点】本题主要考查关于坐标

    14、轴对称的点的坐标特征,熟练掌握“关于x轴对称的两点,横坐标相等,纵坐标互为相反数;关于y轴对称的两点,横坐标互为相反数,纵坐标相等”是解题的关键2、1【解析】【分析】根据等腰三角形三线合一的性质即可得出,即得出和是等底同高的三角形,和是等底同高的三角形,即可推出,即可求出答案【详解】BDBA,BP是ABC的角平分线,和是等底同高的三角形,和是等底同高的三角形,故答案为:1【考点】本题考查等腰三角形的性质掌握等腰三角形“三线合一”是解答本题的关键3、15【解析】【分析】根据等腰三角形两底角相等,求出ABC的度数,再根据线段垂直平分线上的点到线段两端点的距离相等,可得AD=BD,根据等边对等角的性

    15、质,可得ABD=A,然后求DBC的度数即可【详解】AB=AC,A=50, ABC=(180A)=(18050)=65, MN垂直平分线AB,AD=BD, ABD=A=50, DBC=ABCABD=6550=15. 故答案为:15.【考点】考查等腰三角形的性质,线段垂直平分线的性质,掌握垂直平分线的性质是解题的关键.4、或【解析】【分析】已知条件,先证BEOCDO,再证明ABCACB最后得到ABC是等腰三角形;已知条件可证明BEOCDO,再证明ABC是等腰三角形.【详解】解:或.由证明ABC是等腰三角形.在BEO和CDO中,EBODCO,EOBDOC,BECD.BEOCDO(AAS),BOCO,

    16、OBCOCB,EBOOBCDCOOCB,即ABCACB,ABAC. 因此ABC是等腰三角形.由证明ABC是等腰三角形.在BEO和CDO中,EOBDOC,BEOCDO,BECD,BEOCDO(AAS),BOCO,OBCOCB,EBOOBCDCOOCB,即ABCACB,ABAC.ABC是等腰三角形.故答案为:或.【考点】本题考查了全等三角形的判定与性质、等腰三角形的判定;其中掌握用“AAS”判定两个三角形全等和用“等角对等边”判定三角形为等腰三角形是解决本题的关键5、7【解析】【分析】根据题意知点B关于直线EF的对称点为点C,故当点P与点D重合时,AP+BP的最小值,求出AC长度即可得到结论【详解

    17、】解:垂直平分,B,C关于直线对称设交于点D,当P和D重合时,的值最小,最小值等于的长,周长的最小值是【考点】本题考查了勾股定理,轴对称-最短路线问题的应用,解题的关键是找出P的位置三、解答题1、(1)详见解析;(2).【解析】【分析】(1)连接CE,根据垂直平分线的性质得到EC=EA,再根据等腰三角形的性质得到EC=EB,进而即可得解;(2)根据含有30角的直角三角形的性质即可得解.【详解】(1)如下图,连接EC,DE是AC的垂直平分线EA=ECEC=EBEB=EA为的中点;(2)DE是AC的垂直平分线,BE=AE.【考点】本题主要考查了垂直平分线的性质及等腰三角形的性质,以及含有30角的直

    18、角三角形的性质,熟练掌握相关三角形的性质是解决本题的关键.2、见解析【解析】【分析】根据等腰三角形的性质得到BAD=CAD,根据平行线的性质得到ADE=BAD,等量代换得到ADE=CAD于是得到结论【详解】解:ABC是等腰三角形,AB=AC,AD是底边BC上的中线,BAD=CAD,DEAB,ADE=BAD,ADE=CAD,AE=ED,AED是等腰三角形【考点】本题主要考查等腰三角形的判定与性质以及平行线的性质,熟练掌握等腰三角形的判定和性质定理是解题的关键3、AB22,CD4.【解析】【分析】此题为几何题,看题目只是一个四边形,要求两条未知边,那肯定要添辅助线.过点D作DHBA延长线于H,作D

    19、MBC于M.构建矩形HBMD.利用矩形的性质和解直角三角形来求AB、CD的长度.【详解】如图,过点D作DHBA延长线于H,作DMBC于点M.B90,四边形HBMD是矩形.HDBM,BHMD,ABMADC90,又C60,ADHMDC30,在RtAHD中,AD1,ADH30,则AHAD,DH.MCBCBMBCDH2.在RtCMD中,CD2MC4,DMCD.ABBHAHDMAH【考点】本题考查了勾股定理和矩形的判定与性质.此题的关键是根据题意作出辅助线,构建矩形.4、(1)见详解,点C 的坐标为(0,4);(2)见详解;(3)16【解析】【分析】(1)作B点关于y轴的对称点 连接与y轴的交点即为C点

    20、,即可求出点C的坐标;(2)根据网格画出ABC关于y轴对称的ABC即可;(3)根据梯形面积公式即可求四边形AABB的面积【详解】解:(1)所要求作ABC 如图所示,点C的坐标为(0,4);(2)ABC即为所求;(3)点A,B,A,B的坐标分别为:(3,1)、(1,5)、(3,1)、(1,5);四边形AABB的面积为: = (2+6)416【考点】本题考查了作图轴对称变换,解决本题的关键是掌握轴对称的性质5、65;32.5【解析】【分析】由题意,在ABC中,ABADDC,BAD50,根据等腰三角形的性质可以求出底角,再根据三角形内角与外角的关系即可求出内角C【详解】ABAD,ABD是等腰三角形BAD+B+ADB=180BADB(180BAD)=(18050)65ADDC,C=DACADB=C+DAC=2CCADB65【考点】本题考查等腰三角形的性质,三角形的内角和定理及内角与外角的关系利用三角形的内角求角的度数是一种常用的方法,要熟练掌握

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度人教版八年级数学上册第十三章轴对称定向攻克试卷(含答案详解版).docx
    链接地址:https://www.ketangku.com/wenku/file-641760.html
    相关资源 更多
  • 人教版八年级上册15.2.3整数指数幂.docx人教版八年级上册15.2.3整数指数幂.docx
  • 人教版八年级上册15.2.2 分式的混合运算.docx人教版八年级上册15.2.2 分式的混合运算.docx
  • 人教版八年级上册15.2.2 分式的化简.docx人教版八年级上册15.2.2 分式的化简.docx
  • 人教版八年级上册15.2.2 分式的加减(二).docx人教版八年级上册15.2.2 分式的加减(二).docx
  • 人教版八年级上册15.2.2 分式的加减(一).docx人教版八年级上册15.2.2 分式的加减(一).docx
  • 人教版八年级上册15.1 分式同步练习.docx人教版八年级上册15.1 分式同步练习.docx
  • 人教版八年级上册14.3 提公因式法分解练习题及答案.docx人教版八年级上册14.3 提公因式法分解练习题及答案.docx
  • 人教版八年级上册13.3.2 等边三角形(第一课时)学案(无答案).docx人教版八年级上册13.3.2 等边三角形(第一课时)学案(无答案).docx
  • 人教版八年级上册13.3.1《等腰三角形》.docx人教版八年级上册13.3.1《等腰三角形》.docx
  • 人教版八年级上册13.1.2 线段的垂直平分线的性质导学案(无答案).docx人教版八年级上册13.1.2 线段的垂直平分线的性质导学案(无答案).docx
  • 人教版八年级上册11.3.1《多边形》.docx人教版八年级上册11.3.1《多边形》.docx
  • 人教版八年级上册 阶段性复习 辅导讲义(有答案).docx人教版八年级上册 阶段性复习 辅导讲义(有答案).docx
  • 人教版八年级上册 道德与法治知识点汇总.docx人教版八年级上册 道德与法治知识点汇总.docx
  • 人教版八年级上册 第四讲角平分线的性质与判定 学案 (Word版无答案).docx人教版八年级上册 第四讲角平分线的性质与判定 学案 (Word版无答案).docx
  • 人教版八年级上册 第十五章 15.2 分式的运算 课时练.docx人教版八年级上册 第十五章 15.2 分式的运算 课时练.docx
  • 人教版八年级上册 第十五章 15.1 分式 课时练.docx人教版八年级上册 第十五章 15.1 分式 课时练.docx
  • 人教版八年级上册 第十二章 12.3 角平分线的性质学案(无答案).docx人教版八年级上册 第十二章 12.3 角平分线的性质学案(无答案).docx
  • 人教版八年级上册 第十二章 12.3 角平分线中的辅助线问题 学案(无答案).docx人教版八年级上册 第十二章 12.3 角平分线中的辅助线问题 学案(无答案).docx
  • 人教版八年级上册 第十三章 13.2 画轴对称图形 课时练.docx人教版八年级上册 第十三章 13.2 画轴对称图形 课时练.docx
  • 人教版八年级上册 第十一章三角形单元练习题(无答案).docx人教版八年级上册 第十一章三角形单元练习题(无答案).docx
  • 人教版八年级上册 第十一章 数学活动 平面镶嵌教学实录(详案).docx人教版八年级上册 第十一章 数学活动 平面镶嵌教学实录(详案).docx
  • 人教版八年级上册 第十一章 11.3.1 多边形 学案(无答案).docx人教版八年级上册 第十一章 11.3.1 多边形 学案(无答案).docx
  • 人教版八年级上册 第十一章 11.1.2 三角形的高、中线和角平分线学案(无答案).docx人教版八年级上册 第十一章 11.1.2 三角形的高、中线和角平分线学案(无答案).docx
  • 人教版八年级上册 第八讲等边三角形的性质与判定 讲义(Word版无答案).docx人教版八年级上册 第八讲等边三角形的性质与判定 讲义(Word版无答案).docx
  • 人教版八年级上册 第五讲等腰三角形的判定与性质 讲义(Word版无答案).docx人教版八年级上册 第五讲等腰三角形的判定与性质 讲义(Word版无答案).docx
  • 人教版八年级上册 第五讲等腰三角形的判定与性质 讲义(Word版无答案).docx人教版八年级上册 第五讲等腰三角形的判定与性质 讲义(Word版无答案).docx
  • 人教版八年级上册 第七讲线段的垂直平分线讲义(Word版无答案).docx人教版八年级上册 第七讲线段的垂直平分线讲义(Word版无答案).docx
  • 人教版八年级上册 第15章 分式 复习教案(无答案).docx人教版八年级上册 第15章 分式 复习教案(无答案).docx
  • 人教版八年级上册 第14章 整式的乘法与因式分解《提取公因式》提高训练(图片版无答案).docx人教版八年级上册 第14章 整式的乘法与因式分解《提取公因式》提高训练(图片版无答案).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1