分享
分享赚钱 收藏 举报 版权申诉 / 22

类型2022-2023学年综合复习人教版数学八年级上册期中模拟试题 卷(Ⅱ)(解析卷).docx

  • 上传人:a****
  • 文档编号:646855
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:22
  • 大小:246.58KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022-2023学年综合复习人教版数学八年级上册期中模拟试题 卷解析卷 2022 2023 学年 综合 复习 人教版 数学 年级 上册 期中 模拟 试题 解析
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中模拟试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如果一个多边形内角和是外角和的4倍,那么这个多边形有()条对角线A20

    2、B27C35D442、如图,在ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,B60,C25,则BAD为()A50B70C75D803、如图,AB=AD,BAO=DAO,由此可以得出的全等三角形是()ABCD4、如图,已知图中的两个三角形全等,则的度数是()A72B60C58D505、若过六边形的一个顶点可以画条对角线,则的值是()A1B2C3D4二、多选题(5小题,每小题4分,共计20分)1、下列不是真命题的是()A如果 ab,ac,那么 bcB相等的角是对顶角C一个角的补角大于这个角D一个三角形中至少有两个锐角2、下列说法中,正确的是( )A用同一张底片冲出来的10张五寸照

    3、片是全等形;B我国国旗上的四颗小五角星是全等形;C所有的正六边形是全等形D面积相等的两个直角三角形是全等形3、如图,在AOB的两边截取OA=OB,OC=OD,连接AD,BC交于点P,则下列结论中正确的是( ) 线 封 密 内 号学级年名姓 线 封 密 外 AAODBOCBAPCBPDC点P在AOB的平分线上DCP=DP4、下列长度的各种线段,可以组成三角形的是()A2,3,4B1,1,2C5,5,9D7,5,15、如图,已知于点D,现有四个条件:;那么能得出的条件是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,ACBC于点C,DEBE于点E,BC平分

    4、ABE,BDE=58,则A=_2、已知ABC,A=80,BF平分外角CBD,CF平分外角BCE,BG平分CBF,CG平分外角BCF,则G=_3、如果一个多边形的内角和为1260,那么从这个多边形的一个顶点可以连_条对角线4、如果一个正多边形的一个内角是135,则这个正多边形是_5、如图,若ABCA1B1C1,且A110,B40,则C1_四、解答题(5小题,每小题8分,共计40分)1、如图,在ABC中,BAC90,ABAC,直线m经过点A,BD直线m,CE直线m,垂足分别为D,E(1)求证:ABDACE;(2)若BD2cm,CE4cm,求DE的长2、阅读材料并完成习题:在数学中,我们会用“截长补

    5、短”的方法来构造全等三角形解决问题请看这个例题:如图1,在四边形ABCD中,BAD=BCD=90,AB=AD,若AC=2cm,求四边形ABCD的面积解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明BAEDAC,根据全等三角形的性质得AE=AC=2, EAB=CAD,则EAC=EAB+BAC=DAC+BAC=BAD=90,得S四边形ABCD=SABC+SADC=SABC+SABE=SAEC,这样,四边形ABCD的面积就转化为等腰直角三角形EAC面积 线 封 密 内 号学级年名姓 线 封 密 外 (1)根据上面的思路,我们可以求得四边形ABCD的面积为 cm2(2)请你用上面学到的方法

    6、完成下面的习题如图2,已知FG=FN=HM=GH+MN=2cm,G=N=90,求五边形FGHMN的面积3、在中,直线经过点C,且于D,于E,(1)当直线绕点C旋转到图1的位置时,显然有:(不必证明);(2)当直线绕点C旋转到图2的位置时,求证:;(3)当直线MN绕点C旋转到图3的位置时,试问、具有怎样的等量关系?请直接写出这个等量关系4、在湖的两岸A、B间建一座观赏桥,由于条件限制,无法直接度量A、B两点间的距离请你用学过的数学知识按以下要求设计一测量方案(1)画出测量图案;(2)写出测量步骤(测量数据用字母表示);(3)计算AB的距离(写出求解或推理过程,结果用字母表示)5、如图 AB=AC

    7、,CDAB于D,BEAC于E,BE与CD相交于点O(1)求证AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由-参考答案-一、单选题1、C【解析】【分析】根据多边形的内角和公式(n-2)180与外角和定理列出方程,然后求解,多边形对角线的条数可以表示成【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:设这个多边形是n边形,根据题意得,(n-2)180=4360,解得n=1010(10-3)2=35(条)故选:C【考点】本题考查了多边形的内角和与外角和、方程的思想关键是记住内角和的公式与外角和的特征,及多边形对角线的条数公式2、B【解析】【分析】根据线段垂直平分线的

    8、性质得到DA=DC,根据等腰三角形的性质得到DAC=C,根据三角形内角和定理求出BAC,计算即可【详解】DE是AC的垂直平分线,DA=DC,DAC=C=25,B=60,C=25,BAC=95,BAD=BAC-DAC=70,故选B【考点】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键3、B【解析】【分析】观察图形,运用SAS可判定ABO与ADO全等【详解】解:AB=AD,BAO=DAO,AO是公共边,ABOADO (SAS)故选B【考点】本题考查全等三角形的判定,属基础题,比较简单4、D【解析】【分析】根据是a、c边的夹角,5

    9、0的角是a、c边的夹角,然后根据两个三角形全等写出即可【详解】解:是a、c边的夹角,50的角是a、c边的夹角,又两个三角形全等,的度数是50故选:D【考点】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解答本题的关键全等三角形的对应角相等,对应边相等对应边的对角是对应角,对应角的对边是对应边 线 封 密 内 号学级年名姓 线 封 密 外 5、C【解析】【分析】根据从一个n边形一个顶点出发,可以连的对角线的条数是n-3进行计算即可【详解】解:6-3=3(条)答:从六边形的一个顶点可引出3条对角线故选:C【考点】本题考查了多边形的对角线,解答此类题目可以直接记忆:一个n边形一个顶点出发,可

    10、以连的对角线的条数是n-3二、多选题1、ABC【解析】【分析】根据不等式的性质、对顶角的性质、三角形和补角的性质进行判断即可【详解】解:A、如果 ab,ac,不能判断b,c的大小,原命题是假命题;B、相等的角不一定是对顶角,原命题是假命题;C、一个角的补角不一定大于这个角,原命题是假命题;D、一个三角形中至少有两个锐角,原命题是真命题;故选:ABC【考点】本题考查了命题与定理的知识,解题的关键是了解不等式的性质、对顶角的性质、三角形和补角的性质,属于基础知识,难度不大2、AB【解析】【分析】根据能互相重合的两个图形叫做全等图形对各小题分析判断即可得解【详解】解:A、用同一张底片冲出来的10张五

    11、寸照片是全等形,正确;B、我国国旗上的四颗小五角星是全等形,正确;C、所有的正六边形是全等形,错误,正六边形的边长不一定相等;D、面积相等的两个直角三角形是全等形,错误故选:AB【考点】本题考查了全等图形,熟记概念是解题的关键,多边形要注意从角和边两个方面考虑3、ABCD【解析】【分析】根据题中条件,由两边夹一角可得AODBOC,得出对应角相等,又由已知得出AC=BD,可得APCBPD,同理连接OP,可证AOPBOP,进而可得出结论【详解】解:OA=OB,OC=OD,AOB为公共角,AODBOC,A=B, 线 封 密 内 号学级年名姓 线 封 密 外 又APC=BPD,ACP=BDP,OA-O

    12、C=OB-OD,即AC=BD,APCBPD,AP=BP,CP=DP,连接OP,即可得AOPBOP,得出 AOP= BOP,点P在AOB的平分线上故答案选:ABCD【考点】本题主要考查了全等三角形的判定及性质问题,解题的关键是能够熟练掌握全等的判定和性质4、AC【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析【详解】解:A、 ,能构成三角形,符合题意;B、1+1=2,不能构成三角形,不符合题意;C、,能构成三角形,符合题意;D、5+17,不能构成三角形,不符合题意故选AC【考点】此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,

    13、而小于两边的和是解决问题的关键5、ABC【解析】【分析】根据全等三角形的判定方法,即可求解【详解】解:, ,A、若,可用角角边证得,故本选项符合题意;B、若,可用角角边证得,故本选项符合题意;C、若,可用边角边证得,故本选项符合题意;D、若,是角角角,不能证得,故本选项不符合题意;故选:ABC【考点】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法边角边、角边角、边边边是解题的关键三、填空题1、58 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【详解】BC平分ABE,ABC=DBE,ACBC,DEBE,A+ABC=90,BDE+DBE=90,A=BDE=582、115【解

    14、析】【分析】由三角形外角的性质即三角形的内角和定理可求解DBC+ECB=260,再利用角平分线的定义可求解FBC+FCB=130,即可得GBC+GCB=65,再利用三角形内角和定理可求解【详解】解:DBC=A+ACB,ECB=A+ABC,DBC+ECB=A+ACB+A+ABC,ACB+A+ABC=180,DBC+ECB=A+180=80+180=260,BF平分外角DBC,CF平分外角ECB,FBC=DBC,FCB=ECB,FBC+FCB=(DBC+ECB)=130,BG平分CBF,CG平分BCF,GBC=FBC,GCB=FCB,GBC+GCB=(FBC+FCB)=65,G=180-(GBC-

    15、GCB)=180-65=115故答案为:115【考点】本题主要考查三角形的内角和定理,三角形外角的性质,角平分线的定义,求解FBC+FCB=130是解题的关键3、6【解析】【分析】首先根据多边形内角和公式可得多边形的边数,再计算出对角线的条数【详解】解:设此多边形的边数为n,由题意得:(n-2)180=1260,解得;n=9,从这个多边形的一个顶点出发所画的对角线条数:9-3=6,故答案为:6【考点】此题主要考查了多边形的内角和计算公式求多边形的边数,关键是掌握多边形的内角和公式180(n-2)4、正八边形【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】根据正多边形的外角和为即

    16、可求出正多边形的边数【详解】解:正多边形的一个内角是135,它的每一个外角为45又因为多边形的外角和恒为360,360458,即该正多边形为正八边形故答案为:正八边形【考点】本题主要考查正多边形的外角和,掌握正多边形的外角和是解决问题的关键5、30【解析】【分析】本题实际上是全等三角形的性质以及根据三角形内角和等于180来求角的度数【详解】ABCA1B1C1,C1=C,又C=180-A-B=180-110-40=30,C1=C=30故答案为30【考点】本题考查了全等三角形的性质;解答时,除必备的知识外,还应将条件和所求联系起来,即将所求的角与已知角通过全等及三角形内角之间的关系联系起来四、解答

    17、题1、(1)见解析;(2)DE6cm【解析】【分析】(1)根据BD直线m,CE直线m,得BDA=CEA=90,而BAC=90,根据等角的余角相等得CAE=ABD,然后根据“AAS”可判断ADBCEA;(2)根据全等三角形的性质得出AE=BD,AD=CE,于是DE=AE+AD=BD+CE【详解】解:(1)BD直线m,CE直线m,BDACEA90,BAC90,BAD+CAE90,BAD+ABD90,CAEABD,在ABD和CAE中,ABDCAE(AAS),(2)ABDCAE,AEBD,ADCE,DEAE+ADBD+CE, 线 封 密 内 号学级年名姓 线 封 密 外 BD2cm,CE4cm,DE6

    18、cm;【考点】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;得出CAE=ABD是解题关键2、(1)2;(2)4【解析】【分析】(1)根据题意可直接求等腰直角三角形EAC的面积即可;(2)延长MN到K,使NK=GH,连接FK、FH、FM,由(1)易证,则有FK=FH,因为HM=GH+MN易证,故可求解【详解】(1)由题意知,故答案为2;(2)延长MN到K,使NK=GH,连接FK、FH、FM,如图所示: FG=FN=HM=GH+MN=2cm,G=N=90,FNK=FGH=90,FH=FK,又FM=FM,HM=KM=MN+GH=MN+NK,M

    19、K=FN=2cm,【考点】本题主要考查全等三角形的性质与判定,关键是根据截长补短法及割补法求面积的运用3、(1)见解析;(2)见解析;(3)DE=BE-AD【解析】【分析】(1)由于ABC中,ACB=90,AC=BC,直线MN经过点C,且ADMN于D,BEMN于E,由此即可证明ADCCEB,然后利用全等三角形的性质即可解决问题;(2)由于ABC中,ACB=90,AC=BC,直线MN经过点C,且ADMN于D,BEMN于E,由此仍然可以证明ADCCEB,然后利用全等三角形的性质也可以解决问题;(3)当直线MN绕点C旋转到图(3)的位置时,仍然ADCCEB,然后利用全等三角形的性质可以得到DE=BE

    20、-AD【详解】解:(1)ABC中,ACB=90,ACD+BCE=90,又直线MN经过点C,且ADMN于D,BEMN于E,ADC=CEB=90ACD+DAC=90,BCE=DAC,在ADC和CEB中, 线 封 密 内 号学级年名姓 线 封 密 外 ,ADCCEB(AAS),CD=BE,CE=AD,DE=CD+CE=AD+BE;(2)ABC中,ACB=90,直线MN经过点C,且ADMN于D,BEMN于E,ADC=CEB=90,ACD+BCE=BCE+CBE=90,而AC=BC,ADCCEB,CD=BE,CE=AD,DE=CE-CD=AD-BE;(3)如图3,ABC中,ACB=90,直线MN经过点C

    21、,且ADMN于D,BEMN于E,ADC=CEB=90,ACD+BCE=BCE+CBE=90,ACD=CBE,AC=BC,ADCCEB,CD=BE,CE=AD,DE=CD-CE=BE-AD;DE、AD、BE之间的关系为DE=BE-AD【考点】此题需要考查了全等三角形的判定与性质,也利用了直角三角形的性质,是一个探究性题目,对于学生的能力要求比较高4、(1)见解析;(2)见解析;(3)设DC=m,则AB= m【解析】【分析】本题让我们了解测量两点之间的距离的一种方法,设计时,只要符合全等三角形全等的条件,方案具有可操作性,需要测量的线段在陆地一侧可实施,就可以达到目的【详解】解:(1)见图:(2)

    22、在湖岸上选一点O,连接BO并延长到C使BO=OC,连接AO并延长到点D使OD=AO,连接CD,则AB= CD测量DC的长度即为AB的长度;(3)设DC=mBO=CO,AOB=COD,AO=DOAOBCOD(SAS)AB=CD=m【考点】本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻 线 封 密 内 号学级年名姓 线 封 密 外 找所求线段与已知线段之间的等量关系5、(1)证明见解析;(2)互相垂直,证明见解析【解析】【分析】(1)根据AAS推出ACDABE,根据全等三角形的性质得出即可;(2)证RtADORtAEO,推出DAO=EAO,根据等腰三角形的性质推出即可【详解】(1)证明:CDAB,BEAC,ADC=AEB=90,ACD和ABE中,ACDABE(AAS),AD=AE(2)猜想:OABC证明:连接OA、BC,CDAB,BEAC,ADC=AEB=90在RtADO和RtAEO中,RtADORtAEO(HL)DAO=EAO,又AB=AC,OABC

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年综合复习人教版数学八年级上册期中模拟试题 卷(Ⅱ)(解析卷).docx
    链接地址:https://www.ketangku.com/wenku/file-646855.html
    相关资源 更多
  • 专题训练(二)有理数的绝对值及偶次方的非负性.docx专题训练(二)有理数的绝对值及偶次方的非负性.docx
  • 专题训练(二)中点四边形.docx专题训练(二)中点四边形.docx
  • 专题训练(二).docx专题训练(二).docx
  • 专题训练(三)混而不乱的有理数运算.docx专题训练(三)混而不乱的有理数运算.docx
  • 专题训练(三)复分解反应.docx专题训练(三)复分解反应.docx
  • 专题训练(三)重力大小与质量关系的探究——八年级物理下册同步学与练(人教版)(解析版).docx专题训练(三)重力大小与质量关系的探究——八年级物理下册同步学与练(人教版)(解析版).docx
  • 专题训练(三)重力大小与质量关系的探究——八年级物理下册同步学与练(人教版)(原卷版).docx专题训练(三)重力大小与质量关系的探究——八年级物理下册同步学与练(人教版)(原卷版).docx
  • 专题训练(三)复分解反应.docx专题训练(三)复分解反应.docx
  • 专题训练(一)物质的鉴别、除杂和推断.docx专题训练(一)物质的鉴别、除杂和推断.docx
  • 专题训练(一)物质的鉴别、除杂和推断.docx专题训练(一)物质的鉴别、除杂和推断.docx
  • 专题训练直角三角形在圆中的应用.docx专题训练直角三角形在圆中的应用.docx
  • 专题训练概率与代数、几何等知识的综合.docx专题训练概率与代数、几何等知识的综合.docx
  • 专题训练圆中的多解问题.docx专题训练圆中的多解问题.docx
  • 专题训练切线的判定和性质的综合应用.docx专题训练切线的判定和性质的综合应用.docx
  • 专题训练二 平行四边形解答题强化高分必刷精选题(22道)-2021-2022学年八年级数学下册《考点•题型•技巧》精讲与精练高分突破(人教版).docx专题训练二 平行四边形解答题强化高分必刷精选题(22道)-2021-2022学年八年级数学下册《考点•题型•技巧》精讲与精练高分突破(人教版).docx
  • 专题训练二 三角恒等变换技巧基础过关必刷30题-2021-2022学年高一数学《重点•难点•热点》精讲与精练分层突破(苏教版2019必修第二册).docx专题训练二 三角恒等变换技巧基础过关必刷30题-2021-2022学年高一数学《重点•难点•热点》精讲与精练分层突破(苏教版2019必修第二册).docx
  • 专题训练一 常见几何体表面积和体积必刷题精练-2021-2022学年高一数学《考点•题型•技巧》精讲与精练高分突破(人教A版2019必修第二册).docx专题训练一 常见几何体表面积和体积必刷题精练-2021-2022学年高一数学《考点•题型•技巧》精讲与精练高分突破(人教A版2019必修第二册).docx
  • 专题训练 解一元一次方程的技巧.docx专题训练 解一元一次方程的技巧.docx
  • 专题训练 解一元一次方程的四种易错点及两种技巧.docx专题训练 解一元一次方程的四种易错点及两种技巧.docx
  • 专题训练 规律探究型问题.docx专题训练 规律探究型问题.docx
  • 专题训练 快速有效地寻找实际问题中的相等关系.docx专题训练 快速有效地寻找实际问题中的相等关系.docx
  • 专题训练 巧用抛物线的对称性解题.docx专题训练 巧用抛物线的对称性解题.docx
  • 专题训练 圆的切线证明添辅助线两法.docx专题训练 圆的切线证明添辅助线两法.docx
  • 专题训练 列一元一次方程解应用题的设元技巧.docx专题训练 列一元一次方程解应用题的设元技巧.docx
  • 专题训练 二次函数图像信息专题.docx专题训练 二次函数图像信息专题.docx
  • 专题训练 不规则图形的面积及曲线长的求法.docx专题训练 不规则图形的面积及曲线长的求法.docx
  • 专题训练9(1).docx专题训练9(1).docx
  • 专题训练9 利用导数研究函数的最值问题 - 2022届高考数学一轮复习 (新高考).docx专题训练9 利用导数研究函数的最值问题 - 2022届高考数学一轮复习 (新高考).docx
  • 专题训练8 利用导数研究函数的极值问题- 2022届高考数学一轮复习 (新高考).docx专题训练8 利用导数研究函数的极值问题- 2022届高考数学一轮复习 (新高考).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1