2022年人教版九年级数学上册第二十二章二次函数定向测评练习题(解析版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年人教版 九年级 数学 上册 第二十二 二次 函数 定向 测评 练习题 解析
- 资源描述:
-
1、人教版九年级数学上册第二十二章二次函数定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,正方形四个顶点的坐标依次为(1,1),(3,1),(3,3),(1,3),若抛物线y=ax2的图象与正方
2、形有公共顶点,则实数a的取值范围是()ABCD2、由二次函数,可知()A其图象的开口向下B其图象的对称轴为直线x=-3C其最小值为1D当x3时,y随x的增大而增大3、已知函数ykx27x7的图象和x轴有交点,则k的取值范围是()ABC且k0D且k04、向空中发射一枚炮弹,第秒时的高度为米,且高度与时间的关系为,若此炮弹在第秒与第秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )A第秒B第秒C第秒D第秒5、关于二次函数,下列说法正确的是()A图象的对称轴在轴的右侧B图象与轴的交点坐标为C图象与轴的交点坐标为和D的最小值为96、已知学校航模组设计制作的火箭升空高度h(m)与飞行时间t(s)满
3、足函数表达式ht224t1,则下列说法中正确的是()A点火后1s和点火后3s的升空高度相同B点火后24s火箭落于地面C火箭升空的最大高度为145mD点火后10s的升空高度为139m7、若函数y(a1)x2+2x+a21是二次函数,则()Aa1Ba1Ca1Da18、二次函数y=x2+px+q,当0x1时,此函数最大值与最小值的差()A与p、q的值都有关B与p无关,但与q有关C与p、q的值都无关D与p有关,但与q无关9、二次函数的图象如图所示,则下列结论中不正确的是( )AB函数的最大值为C当时,D10、已知二次函数(其中是自变量)的图象与轴没有公共点,且当时,随的增大而减小,则实数的取值范围是(
4、)ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、抛物线yax2+bx+c(a0)的部分图象如图所示,其与x轴的一个交点坐标为(3,0),对称轴为x1,则当y0时,x的取值范围是_2、如图,ABC90,AC6,以AB为边长向外作等边ABM,连CM,则CM的最大值为 _3、如图,在平面直角坐标系中,点A在抛物线yx22x2上运动过点A作ACx轴于点C,以AC为对角线作矩形ABCD,连接BD,则对角线BD的最小值为_4、将抛物线沿直线方向移动个单位长度,若移动后抛物线的顶点在第一象限,则移动后抛物线的解析式是_5、定义:由a,b构造的二次函数叫做一次函数yaxb的“
5、滋生函数”,一次函数yaxb叫做二次函数的“本源函数”(a,b为常数,且)若一次函数yaxb的“滋生函数”是,那么二次函数的“本源函数”是_三、解答题(5小题,每小题10分,共计50分)1、某厂家生产一批遮阳伞,每个遮阳伞的成本价是20元,试销售时发现:遮阳伞每天的销售量y(个)与销售单价x(元)之间是一次函数关系,当销售单价为28元时,每天的销售量为260个;当销售单价为30元时,每天的销售量为240个(1)求遮阳伞每天的销出量y(个)与销售单价x(元)之间的函数关系式;(2)设遮阳伞每天的销售利润为w(元),当销售单价定为多少元时,才能使每天的销售利润最大?最大利润是多少元?2、如图1,抛
6、物线y=ax2+bx+3交x轴于点A(1,0)和点B(3,0)(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上求四边形ACFD的面积;点P是线段AB上的动点(点P不与点A、B重合),过点P作PQx轴交该抛物线于点Q,连接AQ、DQ,当AQD是直角三角形时,求出所有满足条件的点Q的坐标3、已知抛物线与x轴交于A,B两点,与y轴交于C点(1)求m的取值范围(2)若,直线经过点A并与y轴交于点D,且,求抛物线的解析式4、如图所示,抛物线的对称轴为直线,抛物线与轴交于、两点,与轴交于点(1)求抛物线的解析式;(2)连结,在第一象限内的抛物线
7、上,是否存在一点,使的面积最大?最大面积是多少?5、如图,已知二次函数的图象经过A(2,0)、B(0,-6)两点(1)求这个二次函数的解析式;(2)求这个二次函数的对称轴、顶点坐标;(3)设该二次函数的对称轴与x轴交于点C,连结BA、BC,求ABC的面积-参考答案-一、单选题1、A【解析】【分析】求出抛物线经过两个特殊点时的a的值即可解决问题【详解】解:当抛物线经过(1,3)时,a=3,当抛物线经过(3,1)时,a=,观察图象可知a3,故选:A【考点】本题考查二次函数图象与系数的关系,二次函数图象上的点的坐标特征等知识,解题的关键是熟练掌握基本知识,属于中考常考题型2、C【解析】【分析】根据二
8、次函数的性质,直接根据的值得出开口方向,再利用顶点坐标的对称轴和增减性,分别分析即可【详解】解:由二次函数,可知:,其图象的开口向上,故此选项错误;其图象的对称轴为直线,故此选项错误;其最小值为1,故此选项正确;当时,随的增大而减小,故此选项错误故选:【考点】此题主要考查了二次函数的性质,同学们应根据题意熟练地应用二次函数性质,这是中考中考查重点知识3、B【解析】【分析】对分情况进行讨论,时,为一次函数,符合题意;时,二次函数,求解即可【详解】解:当时,函数为,为一次函数,与x轴有交点,符合题意;当,函数为,为二次函数,因为图像与x轴有交点所以,解得且综上,故选B【考点】此题考查了二次函数与x
9、轴有交点的条件,解题的关键是对分情况进行讨论,易错点是容易忽略的情况4、C【解析】【分析】根据二次函数图像的对称性,求出对称轴,即可得到答案.【详解】解:根据题意,炮弹在第秒与第秒时的高度相等,抛物线的对称轴为:秒,第12秒距离对称轴最近,上述时间中,第12秒时炮弹高度最高;故选:C.【考点】本题考查了二次函数的性质和对称性,解题的关键是掌握二次函数的对称性进行解题.5、D【解析】【分析】先把抛物线的解析式化成顶点式,再根据二次函数的性质逐个判断即可【详解】抛物线的对称轴为直线:x=-1,在y轴的左侧,故选项A错误;令x=0,则y=-8,所以图象与轴的交点坐标为,故选项B错误;令y=0,则,解
10、得x1=2,x2=-4,图象与轴的交点坐标为和,故选项C错误;,a=10,所以函数有最小值-9,故选项D正确故选:D【考点】本题考查了二次函数的图象、二次函数的性质和二次函数的最值,能熟记二次函数的性质是解此题的关键6、C【解析】【分析】分别求出t=1、3、24、10时h的值可判断A、B、D三个选项,将解析式配方成顶点式可判断C选项【详解】解:A、当t=1时,h=24;当t=3时,h=64;所以点火后1s和点火后3s的升空高度不相同,此选项错误;B、当t=24时,h=10,所以点火后24s火箭离地面的高度为1m,此选项错误;C、由ht224t1=(t-12)2+145知火箭升空的最大高度为14
11、5m,此选项正确;D、当t=10时,h=141m,此选项错误;故选:C【考点】本题主要考查二次函数的应用,解题的关键是熟练掌握二次函数的性质7、A【解析】【分析】利用二次函数定义进行解答即可【详解】解:由题意得:a10,解得:a1,故选:A【考点】本题主要考查了二次函数的定义,准确计算是解题的关键8、D【解析】【分析】分别求出函数解析式的最小值、当0x1时端点值即:当x=0和x=1时的函数值由二次函数性质可知此函数最大值与最小值必是其中的两个,通过比较可知差值与p有关,但与q无关【详解】解:依题意得:当时,端点值,当时,端点值,当时,函数最小值,由二次函数的最值性质可知,当0x1时,此函数最大
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
