分享
分享赚钱 收藏 举报 版权申诉 / 26

类型2022年解析卷人教版九年级数学上册期末综合测评试题 (B)卷(含答案及详解).docx

  • 上传人:a****
  • 文档编号:712282
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:26
  • 大小:623.95KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年解析卷人教版九年级数学上册期末综合测评试题 B卷含答案及详解 2022 解析 卷人教版 九年级 数学 上册 期末 综合 测评 试题 答案 详解
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末综合测评试题 (B)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同当水面

    2、刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A4米B5米C2米D7米2、如图1,矩形中,点为的中点,点沿从点运动到点,设,两点间的距离为,图2是点运动时随变化的关系图象,则的长为()ABCD3、已知每个网格中小正方形的边长都是1,如图中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成,则阴影部分的面积是()AB2C1+D14、一元二次方程,用配方法解该方程,配方后的方程为( )ABCD5、把抛物线向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析

    3、式是()ABCD二、多选题(5小题,每小题4分,共计20分)1、对于二次函数y=2(x1)(x+3),下列说法不正确的是()A图象的开口向上B图象与y轴交点坐标是(0,6)C当x1时,y随x的增大而增大D图象的对称轴是直线x=12、下列关于圆的叙述正确的有( )A对角互补的四边形是圆内接四边形 线 封 密 内 号学级年名姓 线 封 密 外 B圆的切线垂直于圆的半径C正多边形中心角的度数等于这个正多边形一个外角的度数D过圆外一点所画的圆的两条切线长相等3、观察如图推理过程,错误的是()A因为的度数为,所以B因为,所以C因为垂直平分,所以D因为,所以4、下列四个命题中正确的是()A与圆有公共点的直

    4、线是该圆的切线B垂直于圆的半径的直线是该圆的切线C到圆心的距离等于半径的直线是该圆的切线D过圆直径的端点,垂直于此直径的直线是该圆的切线5、下表时二次函数y=ax2+bx+c的x,y的部分对应值:则对于该函数的性质的判断中正确的是()A该二次函数有最大值B不等式y1的解集是x0或x2C方程y=ax2+bx+c的两个实数根分别位于x0和2x之间D当x0时,函数值y随x的增大而增大第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,在中,则图中阴影部分的面积是_(结果保留)2、若m,n是关于x的方程x2-3x-30的两根,则代数式m2+n2-2mn_3、袋中有五颗球,除颜

    5、色外全部相同,其中红色球三颗,标号分别为1,2,3,绿色球两颗,标号分别为1,2,若从五颗球中任取两颗,则两颗球的标号之和不小于4的概率为_4、已知一元二次方程ax2+bx+c=0(a0),下列结论:若方程两根为-1和2,则2a+c=0;若ba+c,则方程有两个不相等的实数根;若b=2a+3c,则方程有两个不相等的实数根;若m是方程的一个根,则一定有b2-4ac=(2am+b)2成立其中结论正确的序号是_5、抛物线的图象和轴有交点,则的取值范围是_四、解答题(5小题,每小题8分,共计40分) 线 封 密 内 号学级年名姓 线 封 密 外 1、如图,两个圆都以点O为圆心,大圆的弦交小圆于两点求证

    6、: 2、如图,抛物线y=2(x-2)2与平行于x轴的直线交于点A,B,抛物线顶点为C,ABC为等边三角形,求SABC;3、在平面直角坐标系中,抛物线的顶点为P,且与y轴交于点A,与直线交于点B,C(点B在点C的左侧).(1)求抛物线的顶点P的坐标(用含a的代数式表示);(2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC围成的封闭区域(不含边界)为“W区域”.当时,请直接写出“W区域”内的整点个数;当“W区域”内恰有2个整点时,结合函数图象,直接写出a的取值范围.4、如图1,在等腰直角三角形中,点,分别为,的中点,为线段上一动点(不与点,重合),将线段绕点逆时针方向旋转得到,连接,(1)证

    7、明:;(2)如图2,连接,交于点证明:在点的运动过程中,总有;若,当的长度为多少时,为等腰三角形?5、已知x1,x2是关于x的一元二次方程x2-4mx+4m2-90的两实数根(1)若这个方程有一个根为-1,求m的值;(2)若这个方程的一个根大于-1,另一个根小于-1,求m的取值范围;(3)已知RtABC的一边长为7,x1,x2恰好是此三角形的另外两边的边长,求m的值-参考答案-一、单选题1、B【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=10代入可求解【详解】解:如

    8、图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=,设大孔所在抛物线解析式为y=ax2+,BC=10,点B(5,0),0=a(5)2+,a=-,大孔所在抛物线解析式为y=-x2+,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(xb)2,EF=14,点E的横坐标为-7,点E坐标为(-7,-),-=m(xb)2,x1=+b,x2=-+b,MN=4,|+b-(-+b)|=4m=-,顶点为A的小孔所在抛物线的解析式为y=-(xb)2,大孔水面宽度为20米,当x=-10时,y=-,-=-(xb)2,x1=+b,x2=-+b,单个小孔的水面宽度=|(+b

    9、)-(-+b)|=5(米),故选:B【考点】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答2、C【解析】【分析】先利用图2得出当P点位于B点时和当P点位于E点时的情况,得到AB和BE之间的关系以及,再利用勾股定理求解即可得到BE的值,最后利用中点定义得到BC的值【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:由图2可知,当P点位于B点时,即,当P点位于E点时,即,则,,即,点为的中点,,故选:C【考点】本题考查了学生对函数图象的理解与应用,涉及到了勾股定理、解一元二次方程、中点的定义等内容,解决本题的关键是能正确理解题意,能从图象中提取相关

    10、信息,能利用勾股定理建立方程等,本题蕴含了数形结合的思想方法3、B【解析】【分析】如图,标注顶点,连接AB,由图形的对称性可得阴影部分面积=S扇形AOB-SABO,从而可得答案.【详解】解:标注顶点,连接AB,由对称性可得:阴影部分面积=S扇形AOB-SABO= 故选:B【考点】本题考查的是阴影部分的面积的计算,扇形面积的计算,掌握“图形的对称性”是解本题的关键.4、D【解析】【分析】按照配方法的步骤,移项,配方,配一次项系数一半的平方.【详解】x22xm=0,x22x=m,x22x+1=m+1,(x1)2=m+1故选D【考点】 线 封 密 内 号学级年名姓 线 封 密 外 此题考查了配方法解

    11、一元二次方程,解题时要注意解题步骤的准确使用5、D【解析】【分析】直接根据“左加右减,上加下减”的原则进行解答即可【详解】由“左加右减”的原则可知,抛物线y=2x2向右平移2个单位所得抛物线是y=2(x2)2;由“上加下减”的原则可知,抛物线y=2(x2)2向下平移1个单位所得抛物线是y=2(x2)21.故选D.【考点】本题考查了二次函数图象与几何变换,解题的关键是掌握二次函数图象与几何变换.二、多选题1、ACD【解析】【分析】将函数解析式变成顶点式,依照二次函数的性质对比四个选项即可得出结论【详解】解:A、y=-2(x-1)(x+3),a=-20,图象的开口向下,故本选项错误,符合题意;B、

    12、y=-2(x-1)(x+3)=-2x2-4x+6,当x=0时,y=6,即图象与y轴的交点坐标是(0,6),故本选项正确,不符合题意;C、y=-2(x-1)(x+3)=-2(x+1)2+8,即当x-1,y随x的增大而减少,故本选项错误,符合题意;D、y=-2(x-1)(x+3)=-2(x+1)2+8,即图象的对称轴是直线x=-1,故本选项错误,符合题意故选:ACD【考点】本题考查了二次函数的性质,解题的关键是将二次函数关系式变为顶点式,联系二次函数性质对比四个选项即可2、ACD【解析】【分析】根据圆内接四边形性质直接可判断A选项正确;利用切线的性质可判断B选项错误;根据正多边形中心角的定义和多边

    13、形外角和可对判断C选项正确;根据切线长定理可判断D选项正确【详解】A.由圆内接四边形定义得:对角互补的四边形是圆内接四边形,A选项正确;B.圆的切线垂直于过切点的半径,B选项错误;C.正多边形中心角的度数等于这个正多边形一个外角的度数,都等于,C选项正确;D. 过圆外一点引的圆的两条切线,则切线长相等,D选项正确故选:ACD【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了正多边形与圆、切线的性质和确定圆的条件,解题关键是熟练掌握有关的概念3、ABC【解析】【分析】A.根据定理“圆心角的度数等于它所对的弧的度数。”可得.B.根据定理“同圆或等圆中,相等的圆心角所对的弧相等。”可

    14、得.C.根据“垂径定理”及弦的定义可得.D.根据“在同圆或等圆中,若两个圆心角、两条弧、两条弦、两条弦的弦心距中得到的四组量中有一组量相等,则对应的其余各组量也相等。”可得.【详解】由定理“圆心角的度数等于它所对的弧的度数。”A. 的度数是 ,故选项A错误.B.由定理“同圆中相等的圆心角所对的弧相等。”,B选项题干中不是同一个圆,故选项B错误.C.由“垂径定理:垂直于弦(非直径)的直径平分这条弦,并且平分弦所对的两条弧。 没有过圆心,不是直径,并且,根据弦的定义,不是圆O的弦,因此无法判断 ,故选项C错误.D. 即 由定理“在同圆或等圆中,若两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量

    15、相等,则对应的其余各组量也相等。”所以,故选项D正确.【考点】本题旨在考查圆,圆心角,所对应的圆弧及弦的相关定义及性质定理,熟练掌握圆的相关定理是解题的关键.4、CD【解析】【分析】要正确理解切线的定义:和圆有唯一公共点的直线是圆的切线掌握切线的判定:经过半径的外端,且垂直于这条半径的直线,是圆的切线;到圆心的距离等于半径的直线是该圆的切线【详解】解:A中,与圆有两个公共点的直线,是圆的割线,故该选项不符合题意;B中,应经过此半径的外端,故该选项不符合题意;C中,根据切线的判定方法,故该选项符合题意;D中,根据切线的判定方法,故该选项符合题意故选:CD【考点】本题考查了切线的判定注意掌握切线的

    16、判定定理与切线的定义是解此题的关键5、BC【解析】【分析】由图表可得二次函数y=ax2+bx+c的对称轴为直线x=1,a0,即可判断A,D不正确,由图表可直接判断B,C正确【详解】解:当x=0时,y=-1;当x=2时,y=-1;当x=,y=;当x=,y=;二次函数y=ax2+bx+c的对称轴为直线x=1, 线 封 密 内 号学级年名姓 线 封 密 外 x1时,y随x的增大而增大,x1时,y随x的增大而减小a0即二次函数有最小值则A,D错误由图表可得:不等式y-1的解集是x0或x2;由图表可得:方程ax2+bx+c=0的两个实数根分别位于-x0和2x之间;所以选项B,C正确,故选:BC【考点】本

    17、题考查了抛物线与x轴的交点,二次函数的性质,二次函数的最值,理解图表中信息是本题的关键三、填空题1、【解析】【分析】由,根据圆周角定理得出,根据S阴影=S扇形AOB可得出结论【详解】解:,S阴影=S扇形AOB,故答案为:【考点】本题主要考查圆周角定理、扇形的面积计算,根据题意求得三角形与扇形的面积是解答此题的关键2、21【解析】【分析】先根据根与系数的关系得到m+n3,mn3,再根据完全平方公式变形得到m2+n22mn(m+n)24mn,然后利用整体代入的方法计算【详解】解:m,n是关于x的方程x2-3x-30的两根,m+n3,mn3,m2+n22mn(m+n)24mn324(3)21故答案为

    18、:21【考点】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c0(a0)的两根时,x1+x2,x1x23、#0.5【解析】【分析】画树状图,共有20个等可能的结果,两颗球的标号之和不小于4的结果有10个,再由概率公式求解即可【详解】 线 封 密 内 号学级年名姓 线 封 密 外 画树状图如图:共有20个等可能的结果,两颗球的标号之和不小于4的结果有10个,两颗球的标号之和不小于4的概率为,故答案为:【考点】本题考查了列表法与树状图法以及概率公式,正确画出树状图是解题的关键4、【解析】【分析】利用根与系数的关系判断;由=b2-4ac判断;由判别式可判断;将x=m代入方程得am

    19、2=-(bm+c),再代入=(2am+b)2变形可判断【详解】解:若方程两根为-1和2,则=-12=-2,即c=-2a,2a+c=2a-2a=0,故正确;由ba+c不能判断=b2-4ac值的大小情况,故错误;若b=2a+3c,则=b2-4ac=4(a+c)2+5c20,一元二次方程ax2+bx+c=0有两个不相等的实数根,故正确若m是方程ax2+bx+c=0的一个根,所以有am2+bm+c=0,即am2=-(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a-(bm+c)+4abm+b2=4abm-4abm-4ac+b2=b2-4ac故正确;故答案为:【考点】本题考查了一元二次方

    20、程ax2+bx+c=0(a0)的根与系数的关系及根的判别式=b2-4ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根5、且【解析】【分析】由题意知,计算求解即可【详解】解:由题意知,解得故答案为:且【考点】本题考查了二次函数与轴的交点个数解题的关键在于熟练掌握二次函数与轴的交点个数四、解答题1、见解析【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 过点O作OPAB,由等腰三角形的性质可知AP=BP,再由垂径定理可知CP=DP,故可得出结论【详解】证明:如图所示,过点O作OPAB,垂足为点P,由垂径定理可得PAPB,PCPD,PAPCPB

    21、PD,ACBD【考点】本题考查的是垂径定理,根据题意作出辅助线,利用垂径定理求解是解答此题的关键2、 【解析】【分析】过B作BPx轴交于点P,连接AC,BC,由抛物线y=得C(2,0),于是得到对称轴为直线x=2,设B(m,n),根据ABC是等边三角形,得到BC=AB=2m-4,BCP=ABC=60,求出PB=PC=(m-2),由于PB=n=,于是得到(m-2)=,解方程得到m的值,然后根据三角形的面积公式即可得到结果【详解】解:过B作BPx轴交于点P,连接AC,BC,由抛物线y=得C(2,0),对称轴为直线x=2,设B(m,n),CP=m-2,ABx轴,AB=2m-4,ABC是等边三角形,B

    22、C=AB=2m-4,BCP=ABC=60,PB=PC=(m-2),PB=n=,(m-2)=,解得m=,m=2(不合题意,舍去),AB=,BP=,SABC=【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查二次函数的性质.3、(1)顶点P的坐标为;(2) 6个; ,【解析】【分析】(1)由抛物线解析式直接可求;(2)由已知可知A(0,2),C(2+ ,-2),画出函数图象,观察图象可得;分两种情况求:当a0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,a= ,则a1;当a0时,抛物线定点经过(2,2)时,a=-1,抛物线定点经过(2,1)时,a=-,则-1

    23、a-【详解】解:(1)y=ax2-4ax+2a=a(x-2)2-2a, 顶点为(2,-2a);(2)如图,a=2,y=2x2-8x+2,y=-2,A(0,2),C(2+,-2),有6个整数点;当a0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,; 当时,抛物线顶点经过点(2,2)时,;抛物线顶点经过点(2,1)时,; 综上所述:,【考点】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质是解题的关键4、(1)见详解;(2)见详解;当的长度为2或时,为等腰三角形【解析】【分析】(1)由旋转的性质得AH=AG,HAG=90,从而得BAH=CAG,进而即可得到结论;

    24、(2)由,得AH=AG,再证明,进而即可得到结论;为等腰三角形,分3种情况:(a)当QAG=QGA=45时,(b)当GAQ=GQA=67.5时,(c)当AQG=AGQ=45时,分别画出图形求解,即可【详解】解:(1)线段绕点A逆时针方向旋转得到,AH=AG,HAG=90,在等腰直角三角形中,AB=AC, 线 封 密 内 号学级年名姓 线 封 密 外 BAH=90-CAH=CAG,;(2)在等腰直角三角形中,AB=AC,点,分别为,的中点,AE=AF,是等腰直角三角形,AH=AG,BAH =CAG,AEH=AFG=45,HFG=AFG+AFE=45+45=90,即:;,点,分别为,的中点,AE=

    25、AF=2,AGH=45,为等腰三角形,分3种情况:(a)当QAG=QGA=45时,如图,则HAF=90-45=45,AH平分EAF,点H是EF的中点,EH=;(b)当GAQ=GQA=(180-45)2=67.5时,如图,则EAH=GAQ=67.5,EHA=180-45-67.5=67.5,EHA=EAH,EH=EA=2;(c)当AQG=AGQ=45时,点H与点F重合,不符合题意,舍去,综上所述:当的长度为2或时,为等腰三角形【考点】本题主要考查等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,熟练掌握全等三角形的判定定理,根据题意画出图形,进行分类讨论,是解题的关键5、 (1

    26、)m的值为1或-2(2)-2m1 线 封 密 内 号学级年名姓 线 封 密 外 (3)m或m【解析】【分析】(1)把x=-1代入方程,列出m的一元二次方程,求出m的值;(2)首先用m表示出方程的两根,然后列出m的不等式组,求出m的取值范围;(3)首先用m表示出方程的两根,分直角ABC的斜边长为7或2m+3,根据勾股定理求出m的值.(1)解:x1,x2是一元二次方程x2-4mx+4m2-90的两实数根,这个方程有一个根为-1,将x-1代入方程x2-4mx+4m2-90,得1+4m+4m2-90解得m1或m-2m的值为1或-2(2)解:x2-4mx+4m29,(x-2m)29,即x-2m3x12m+3,x22m-32m+32m-3,解得-2m1m的取值范围是-2m1(3)解:由(2)可知方程x2-4mx+4m2-90的两根分别为2m+3,2m-3若RtABC的斜边长为7,则有49(2m+3)2+(2m-3)2解得m边长必须是正数,m若斜边为2m+3,则(2m+3)2(2m-3)2+72解得m综上所述,m或m【考点】本题主要考查了根的判别式与根与系数的关系的知识,解答本题的关键是熟练掌握根与系数关系以及根的判别式的知识,此题难度一般.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年解析卷人教版九年级数学上册期末综合测评试题 (B)卷(含答案及详解).docx
    链接地址:https://www.ketangku.com/wenku/file-712282.html
    相关资源 更多
  • 人教版八年级上册15.2.3整数指数幂.docx人教版八年级上册15.2.3整数指数幂.docx
  • 人教版八年级上册15.2.2 分式的混合运算.docx人教版八年级上册15.2.2 分式的混合运算.docx
  • 人教版八年级上册15.2.2 分式的化简.docx人教版八年级上册15.2.2 分式的化简.docx
  • 人教版八年级上册15.2.2 分式的加减(二).docx人教版八年级上册15.2.2 分式的加减(二).docx
  • 人教版八年级上册15.2.2 分式的加减(一).docx人教版八年级上册15.2.2 分式的加减(一).docx
  • 人教版八年级上册15.1 分式同步练习.docx人教版八年级上册15.1 分式同步练习.docx
  • 人教版八年级上册14.3 提公因式法分解练习题及答案.docx人教版八年级上册14.3 提公因式法分解练习题及答案.docx
  • 人教版八年级上册13.3.2 等边三角形(第一课时)学案(无答案).docx人教版八年级上册13.3.2 等边三角形(第一课时)学案(无答案).docx
  • 人教版八年级上册13.3.1《等腰三角形》.docx人教版八年级上册13.3.1《等腰三角形》.docx
  • 人教版八年级上册13.1.2 线段的垂直平分线的性质导学案(无答案).docx人教版八年级上册13.1.2 线段的垂直平分线的性质导学案(无答案).docx
  • 人教版八年级上册11.3.1《多边形》.docx人教版八年级上册11.3.1《多边形》.docx
  • 人教版八年级上册 阶段性复习 辅导讲义(有答案).docx人教版八年级上册 阶段性复习 辅导讲义(有答案).docx
  • 人教版八年级上册 道德与法治知识点汇总.docx人教版八年级上册 道德与法治知识点汇总.docx
  • 人教版八年级上册 第四讲角平分线的性质与判定 学案 (Word版无答案).docx人教版八年级上册 第四讲角平分线的性质与判定 学案 (Word版无答案).docx
  • 人教版八年级上册 第十五章 15.2 分式的运算 课时练.docx人教版八年级上册 第十五章 15.2 分式的运算 课时练.docx
  • 人教版八年级上册 第十五章 15.1 分式 课时练.docx人教版八年级上册 第十五章 15.1 分式 课时练.docx
  • 人教版八年级上册 第十二章 12.3 角平分线的性质学案(无答案).docx人教版八年级上册 第十二章 12.3 角平分线的性质学案(无答案).docx
  • 人教版八年级上册 第十二章 12.3 角平分线中的辅助线问题 学案(无答案).docx人教版八年级上册 第十二章 12.3 角平分线中的辅助线问题 学案(无答案).docx
  • 人教版八年级上册 第十三章 13.2 画轴对称图形 课时练.docx人教版八年级上册 第十三章 13.2 画轴对称图形 课时练.docx
  • 人教版八年级上册 第十一章三角形单元练习题(无答案).docx人教版八年级上册 第十一章三角形单元练习题(无答案).docx
  • 人教版八年级上册 第十一章 数学活动 平面镶嵌教学实录(详案).docx人教版八年级上册 第十一章 数学活动 平面镶嵌教学实录(详案).docx
  • 人教版八年级上册 第十一章 11.3.1 多边形 学案(无答案).docx人教版八年级上册 第十一章 11.3.1 多边形 学案(无答案).docx
  • 人教版八年级上册 第十一章 11.1.2 三角形的高、中线和角平分线学案(无答案).docx人教版八年级上册 第十一章 11.1.2 三角形的高、中线和角平分线学案(无答案).docx
  • 人教版八年级上册 第八讲等边三角形的性质与判定 讲义(Word版无答案).docx人教版八年级上册 第八讲等边三角形的性质与判定 讲义(Word版无答案).docx
  • 人教版八年级上册 第五讲等腰三角形的判定与性质 讲义(Word版无答案).docx人教版八年级上册 第五讲等腰三角形的判定与性质 讲义(Word版无答案).docx
  • 人教版八年级上册 第五讲等腰三角形的判定与性质 讲义(Word版无答案).docx人教版八年级上册 第五讲等腰三角形的判定与性质 讲义(Word版无答案).docx
  • 人教版八年级上册 第七讲线段的垂直平分线讲义(Word版无答案).docx人教版八年级上册 第七讲线段的垂直平分线讲义(Word版无答案).docx
  • 人教版八年级上册 第15章 分式 复习教案(无答案).docx人教版八年级上册 第15章 分式 复习教案(无答案).docx
  • 人教版八年级上册 第14章 整式的乘法与因式分解《提取公因式》提高训练(图片版无答案).docx人教版八年级上册 第14章 整式的乘法与因式分解《提取公因式》提高训练(图片版无答案).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1