分享
分享赚钱 收藏 举报 版权申诉 / 6

类型2020-2021学年北师大版数学必修5课后习题:1-3-2 等比数列的前N项和 WORD版含解析.docx

  • 上传人:a****
  • 文档编号:576780
  • 上传时间:2025-12-11
  • 格式:DOCX
  • 页数:6
  • 大小:34.48KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2020-2021学年北师大版数学必修5课后习题:1-3-2 等比数列的前N项和 WORD版含解析 2020 2021 学年 北师大 数学 必修 课后 习题 等比数列 WORD 解析
    资源描述:

    1、3.2等比数列的前n项和课后篇巩固探究A组1.设an是公比为正数的等比数列,若a1=1,a5=16,则数列an前7项的和为()A.63B.64C.127D.128解析:设公比为q(q0),则1q4=16,解得q=2(q=-2舍去).于是S7=1-271-2=127.答案:C2.设Sn为等比数列an的前n项和,已知3S3=a4-2,3S2=a3-2,则公比q等于()A.3B.4C.5D.6解析:由题意知,3S3=a4-2,3S2=a3-2.两式相减,得3a3=a4-a3,即4a3=a4,则q=a4a3=4.答案:B3.若数列an的前n项和Sn=an-1(aR,且a0),则此数列是()A.等差数列

    2、B.等比数列C.等差数列或等比数列D.既不是等差数列,也不是等比数列解析:当n=1时,a1=S1=a-1;当n2时,an=Sn-Sn-1=(an-1)-(an-1-1)=an-an-1=an-1(a-1).当a-1=0,即a=1时,该数列为等差数列,当a1时,该数列为等比数列.答案:C4.公比q-1的等比数列的前3项,前6项,前9项的和分别为S3,S6,S9,则下面等式成立的是()A.S3+S6=S9B.S62=S3S9C.S3+S6-S9=S62D.S32+S62=S3(S6+S9)解析:由题意知S3,S6-S3,S9-S6也成等比数列.(S6-S3)2=S3(S9-S6),整理得S32+S

    3、62=S3(S6+S9).答案:D5.已知an是首项为1的等比数列,Sn是an的前n项和,且9S3=S6,则数列1an的前5项和为()A.158或5B.3116或5C.3116D.158解析:设an的公比为q.由9S3=S6知q1,于是9a1(1-q3)1-q=a1(1-q6)1-q,整理得q6-9q3+8=0,所以q3=8或q3=1(舍去),于是q=2.从而1an是首项为11=1,公比为12的等比数列.其前5项的和S=1-1251-12=3116.答案:C6.设等比数列an的前n项和为Sn,若a1=1,S6=4S3,则a4=.解析:设等比数列an的公比为q,很明显q1,则1-q61-q=41

    4、-q31-q,解得q3=3,所以a4=a1q3=3.答案:37.已知lg x+lg x2+lg x10=110,则lg x+lg2x+lg10x=.答案:2 0468.已知在等比数列an中,a2=2,a5=14,则a1a2+a2a3+anan+1=.解析:设数列an的公比为q,由a2=2,a5=a2q3=14,得q=12,a1=a2q=4.anan+1an-1an=an+1an-1=an-1q2an-1=q2=14为常数(n2),数列anan+1是以a1a2=42=8为首项,以14为公比的等比数列,a1a2+a2a3+anan+1=81-14n1-14=323(1-4-n).答案:323(1-

    5、4-n)9.(2017北京高考)已知等差数列an和等比数列bn满足a1=b1=1,a2+a4=10,b2b4=a5.(1)求an的通项公式;(2)求和:b1+b3+b5+b2n-1.解(1)设等差数列an的公差为d.因为a2+a4=10,所以2a1+4d=10.解得d=2.所以an=2n-1.(2)设等比数列bn的公比为q.因为b2b4=a5,所以b1qb1q3=9.解得q2=3.所以b2n-1=b1q2n-2=3n-1.从而b1+b3+b5+b2n-1=1+3+32+3n-1=3n-12.10.导学号33194023已知等差数列an满足an+1an(nN+),a1=1,该数列的前三项分别加上

    6、1,1,3后顺次成为等比数列bn的前三项.(1)求数列an,bn的通项公式;(2)设Tn=a1b1+a2b2+anbn(nN+),求Tn.解(1)设d,q分别为等差数列an的公差、等比数列bn的公比,由题意知,a1=1,a2=1+d,a3=1+2d,分别加上1,1,3得2,2+d,4+2d,(2+d)2=2(4+2d),d=2.an+1an,d0,d=2.an=2n-1(nN+).由此可得b1=2,b2=4,b3=8,q=2.bn=2n(nN+).(2)Tn=a1b1+a2b2+anbn=12+322+523+2n-12n,12Tn=122+323+524+2n-12n+1,由-得12Tn=1

    7、2+12+122+123+12n-1-2n-12n+1,Tn=1+1-12n-11-12-2n-12n=3-12n-2-2n-12n=3-2n+32n.B组1.已知等比数列an的前n项和为Sn,则下列一定成立的是()A.若a30,则a2 0170,则a2 0160,则S2 0170D.若a40,则S2 0160解析:若a30,则a3=a1q20,因此a10,当公比q0时,任意nN+,an0,故有S20170,当公比q0时,q20170,故答案为C.答案:C2.已知数列前n项的和Sn=2n-1,则此数列奇数项的前n项的和是()A.13(2n+1-1)B.13(2n+1-2)C.13(22n-1)

    8、D.13(22n-2)解析:由Sn=2n-1知当n=1时,a1=21-1=1.当n2时,an=Sn-Sn-1=2n-1,当n=1时也适合,an=2n-1.奇数项的前n项和为Sn=1-4n1-4=13(4n-1)=13(22n-1).答案:C3.等比数列an的前n项和为Sn,已知S1,2S2,3S3成等差数列,则数列an的公比为.解析:由S1,2S2,3S3成等差数列知4S2=S1+3S3,即4(a1+a2)=a1+3(a1+a2+a3),整理得3a3-a2=0,a3a2=13,则数列an的公比为13.答案:134.设数列xn满足lg xn+1=1+lg xn(nN+),且x1+x2+x100=

    9、100,则x101+x102+x200=.解析:由lgxn+1=1+lgxn,得lgxn+1=lg(10xn),即xn+1xn=10.故x101+x102+x200=q100(x1+x2+x100)=10100100=10102.答案:101025.已知等比数列an是递增数列,Sn是an的前n项和.若a1,a3是方程x2-5x+4=0的两个根,则S6=.解析:x2-5x+4=0的两根为1和4,又an为递增数列,a1=1,a3=4,q=2.S6=1(1-26)1-2=63.答案:636.导学号33194024数列an的前n项和记为Sn,a1=t,点(Sn,an+1)在直线y=3x+1上,nN+.

    10、(1)当实数t为何值时,数列an是等比数列;(2)在(1)的结论下,设bn=log4an+1,cn=an+bn,Tn是数列cn的前n项和,求Tn.解(1)点(Sn,an+1)在直线y=3x+1上,an+1=3Sn+1,an=3Sn-1+1(n1,且nN+),an+1-an=3(Sn-Sn-1)=3an,an+1=4an,n1,a2=3S1+1=3a1+1=3t+1,当t=1时,a2=4a1,数列an是等比数列.(2)在(1)的结论下,an+1=4an,an+1=4n,bn=log4an+1=n,cn=an+bn=4n-1+n,Tn=c1+c2+cn=(40+1)+(41+2)+(4n-1+n)

    11、=(1+4+42+4n-1)+(1+2+3+n)=4n-13+n(n+1)2.7.导学号33194025设数列bn的前n项和为Sn,且bn=2-2Sn,数列an为等差数列,且a5=14,a7=20.(1)求数列bn的通项公式;(2)若cn=anbn(n=1,2,3),Tn为数列cn的前n项和,求Tn.解(1)由bn=2-2Sn,令n=1,则b1=2-2S1,又S1=b1,所以b1=23.当n2时,由bn=2-2Sn及bn-1=2-2Sn-1,可得bn-bn-1=-2(Sn-Sn-1)=-2bn,即bnbn-1=13.所以bn是以23为首项,13为公比的等比数列,于是bn=23n.(2)由数列an为等差数列,公差d=12(a7-a5)=3,可得an=3n-1.从而cn=anbn=2(3n-1)13n,所以Tn=2213+5132+8133+(3n-1)13n,13Tn=22132+5133+(3n-4)13n+(3n-1)13n+1.-得,23Tn=2213+3132+3133+313n-(3n-1)13n+1=2213+31321-13n-11-13-3n-13n+1=73-13n-1-2(3n-1)3n+1,Tn=72-123n-2-3n-13n.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2020-2021学年北师大版数学必修5课后习题:1-3-2 等比数列的前N项和 WORD版含解析.docx
    链接地址:https://www.ketangku.com/wenku/file-576780.html
    相关资源 更多
  • 专题13确定圆的条件、直线和圆的位置关系 (5个知识点8种题型)(解析版).docx专题13确定圆的条件、直线和圆的位置关系 (5个知识点8种题型)(解析版).docx
  • 专题13确定圆的条件、直线和圆的位置关系 (5个知识点8种题型)(原卷版).docx专题13确定圆的条件、直线和圆的位置关系 (5个知识点8种题型)(原卷版).docx
  • 专题13求解摩擦力(知识点复习 例题讲解 过关练习)-备战2023年中考物理一轮复习考点帮 (解析版).docx专题13求解摩擦力(知识点复习 例题讲解 过关练习)-备战2023年中考物理一轮复习考点帮 (解析版).docx
  • 专题13求解摩擦力(知识点复习 例题讲解 过关练习)-备战2023年中考物理一轮复习考点帮 (原卷版).docx专题13求解摩擦力(知识点复习 例题讲解 过关练习)-备战2023年中考物理一轮复习考点帮 (原卷版).docx
  • 专题13新定义与规律探究题(真题21模拟21)-备战2023年中考数学历年真题 1年模拟新题分项详解(重庆专用)【解析版】.docx专题13新定义与规律探究题(真题21模拟21)-备战2023年中考数学历年真题 1年模拟新题分项详解(重庆专用)【解析版】.docx
  • 专题13新定义与规律探究题(真题21模拟21)-备战2023年中考数学历年真题 1年模拟新题分项详解(重庆专用)【原卷版】.docx专题13新定义与规律探究题(真题21模拟21)-备战2023年中考数学历年真题 1年模拟新题分项详解(重庆专用)【原卷版】.docx
  • 专题13整式运算——天津市2023年初三各区数学模拟考试题型分类汇编.docx专题13整式运算——天津市2023年初三各区数学模拟考试题型分类汇编.docx
  • 专题13平衡中的临界和极值问题.docx专题13平衡中的临界和极值问题.docx
  • 专题13平行线之猪脚模型(M模型)-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(解析版).docx专题13平行线之猪脚模型(M模型)-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(解析版).docx
  • 专题13平行线之猪脚模型(M模型)-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(原卷版).docx专题13平行线之猪脚模型(M模型)-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(原卷版).docx
  • 专题13带电粒子在有界匀强磁场中的运动(解析版).docx专题13带电粒子在有界匀强磁场中的运动(解析版).docx
  • 专题13带电粒子在有界匀强磁场中的运动(原卷版).docx专题13带电粒子在有界匀强磁场中的运动(原卷版).docx
  • 专题13寒假成果评价卷 (测试范围:一次函数、代数方程)(解析版).docx专题13寒假成果评价卷 (测试范围:一次函数、代数方程)(解析版).docx
  • 专题13寒假成果评价卷 (测试范围:一次函数、代数方程)(原卷版).docx专题13寒假成果评价卷 (测试范围:一次函数、代数方程)(原卷版).docx
  • 专题13二次函数图象性质(选填50题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第02期).docx专题13二次函数图象性质(选填50题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第02期).docx
  • 专题13二次函数图象性质(选填50题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第02期).docx专题13二次函数图象性质(选填50题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第02期).docx
  • 专题13二次函数图象性质与应用(共38题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期).docx专题13二次函数图象性质与应用(共38题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期).docx
  • 专题13二次函数图象性质与应用(共38题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第01期).docx专题13二次函数图象性质与应用(共38题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第01期).docx
  • 专题13二次函数与胡不归型最值问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(解析版).docx专题13二次函数与胡不归型最值问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(解析版).docx
  • 专题13二次函数与胡不归型最值问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx专题13二次函数与胡不归型最值问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx
  • 专题13不等式B辑(教师版含解析)备战2021年高中数学联赛之1981-2020年高中数学联赛一试试题分专题训练.docx专题13不等式B辑(教师版含解析)备战2021年高中数学联赛之1981-2020年高中数学联赛一试试题分专题训练.docx
  • 专题13不等式B辑(学生版)备战2021年高中数学联赛之1981-2020年高中数学联赛一试试题分专题训练.docx专题13不等式B辑(学生版)备战2021年高中数学联赛之1981-2020年高中数学联赛一试试题分专题训练.docx
  • 专题13 实验:探究弹力和弹簧伸长的关系.docx专题13 实验:探究弹力和弹簧伸长的关系.docx
  • 专题13 二次函数的应用.docx专题13 二次函数的应用.docx
  • 专题13.Unit3写作与阅读(选择性必修第一册)答案全解全析.docx专题13.Unit3写作与阅读(选择性必修第一册)答案全解全析.docx
  • 专题13.9 三角形中的边角关系、命题与证明章末八大题型总结(拔尖篇)(沪科版)(解析版).docx专题13.9 三角形中的边角关系、命题与证明章末八大题型总结(拔尖篇)(沪科版)(解析版).docx
  • 专题13.9 三角形中的边角关系、命题与证明章末八大题型总结(拔尖篇)(沪科版)(原卷版).docx专题13.9 三角形中的边角关系、命题与证明章末八大题型总结(拔尖篇)(沪科版)(原卷版).docx
  • 专题13.8 三角形中的边角关系、命题与证明章末九大题型总结(培优篇)(沪科版)(解析版).docx专题13.8 三角形中的边角关系、命题与证明章末九大题型总结(培优篇)(沪科版)(解析版).docx
  • 专题13.8 三角形中的边角关系、命题与证明章末九大题型总结(培优篇)(沪科版)(原卷版).docx专题13.8 三角形中的边角关系、命题与证明章末九大题型总结(培优篇)(沪科版)(原卷版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1