分享
分享赚钱 收藏 举报 版权申诉 / 26

类型2022-2023学年人教版九年级数学上册期中模拟考试题 卷(Ⅱ)(解析卷).docx

  • 上传人:a****
  • 文档编号:635234
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:26
  • 大小:469.54KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022-2023学年人教版九年级数学上册期中模拟考试题 卷解析卷 2022 2023 学年 人教版 九年级 数学 上册 期中 模拟 考试题 解析
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中模拟考试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、在解一元二次方程x2+px+q0时,小红看错了常数项q,得到方程的两

    2、个根是3,1小明看错了一次项系数P,得到方程的两个根是5,4,则原来的方程是()Ax2+2x30Bx2+2x200Cx22x200Dx22x302、记某商品销售单价为x元,商家销售此种商品每月获得的销售利润为y元,且y是关于x的二次函数已知当商家将此种商品销售单价分别定为55元或75元时,他每月均可获得销售利润1800元;当商家将此种商品销售单价定为80元时,他每月可获得销售利润1550元,则y与x的函数关系式是()Ay(x60)2+1825By2(x60)2+1850Cy(x65)2+1900Dy2(x65)2+20003、下表中列出的是一个二次函数的自变量x与函数y的几组对应值:-2013

    3、6-4-6-4下列各选项中,正确的是A这个函数的图象开口向下B这个函数的图象与x轴无交点C这个函数的最小值小于-6D当时,y的值随x值的增大而增大4、二次函数y=ax2+bx+c的图象如图所示,则该二次函数的顶点坐标为()A(1,3)B(0,1)C(0,3)D(2,1)5、如图,在中,将绕点顺时针旋转度得到,当点的对应点恰好落在边上时,则的长为()A1.6B1.8C2D2.6二、多选题(5小题,每小题4分,共计20分)1、二次函数y=ax2+bx+c(a0)的部分图象如图所示,图象过点(1,0),对称轴为直线x=2,下列结论中正确的有()A4a+b=0 线 封 密 内 号学级年名姓 线 封 密

    4、 外 B9a+c3bC7a3b+2c0D若点A(3,y1)、点B(,y2)、点C(7,y3)在该函数图象上,则y1y3y2E若方程a(x+1)(x5)=3的两根为x1和x2,且x1x2,则x115x22、已知点,下面的说法正确的是()A点与点关于轴对称,则点的坐标为B点绕原点按顺时针方向旋转后到点,则点的坐标为C点与点关于原点中心对称,则点的坐标为D点先向上平移个单位,再向右平移个单位到点,则点的坐标为3、关于x的一元二次方程(k1)x2 +4x+k1=0有两个相等的实数根,则k的值为()A1B0C3D34、以图(以点O为圆心,半径为1的半圆)作为“基本图形”,分别经历如下变换能得到图的有()

    5、A只要向右平移1个单位B先以直线为对称轴进行翻折,再向右平移1个单位C先绕着点O旋转,再向右平移1个单位D绕着的中点旋转即可5、下面是某同学在一次数学测验中解答的填空题,其中答对的是( )A若x2=4,则x=2B若3x2=6,则x=2Cx2 + x-k=0的一个根是1,则k=2D若分式的值为零,则x=2第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、若某二次函数图象的形状与抛物线y3x2相同,且顶点坐标为(0,2),则它的表达式为_2、已知二次函数与x轴有两个交点,把当k取最小整数时的二次函数的图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象

    6、,若新图象与直线有三个不同的公共点,则m的值为_3、在平面直角坐标系中,将点A先向右平移4个单位,再向下平移6个单位得到点B,如果点A和点B关于原点对称,那么点A的坐标是_4、已知二次函数y(xm)2m21,且(1)当m1时,函数y有最大值_(2)当函数值y恒不大于4时,实数m的范围为_5、将二次函数化成一般形式,其中二次项系数为_,一次项系数为_,常数项为_四、解答题(5小题,每小题8分,共计40分)1、某厂家生产一批遮阳伞,每个遮阳伞的成本价是20元,试销售时发现:遮阳伞每天的销售量y(个)与销售单价x(元)之间是一次函数关系,当销售单价为28元时,每天的销售量为260个;当销售单价为30

    7、元时,每天的销售量为240个 线 封 密 内 号学级年名姓 线 封 密 外 (1)求遮阳伞每天的销出量y(个)与销售单价x(元)之间的函数关系式;(2)设遮阳伞每天的销售利润为w(元),当销售单价定为多少元时,才能使每天的销售利润最大?最大利润是多少元?2、解方程:(1)x2x20;(2)3x(x2)2x3、冰墩墩是2022年北京冬季奥运会的吉祥物冰墩墩以熊猫为原型设计,寓意创造非凡、探索未来某超市用2400元购进一批冰墩墩玩偶出售若进价降低20%,则可以多买50个市场调查发现:当每个冰墩墩玩偶的售价是20元时,每周可以销售200个;每涨价1元,每周少销售10个(1)求每个冰墩墩玩偶的进价;(

    8、2)设每个冰墩墩玩偶的售价是x元(x是大于20的正整数),每周总利润是w元求w关于x的函数解析式,并求每周总利润的最大值;当每周总利润不低于1870元时,求每个冰墩墩玩偶售价x的范围4、用适当的方法解下列方程:(1)x2x10;(2)3x(x2)x2;(3)x22x10;(4)(x8)(x1)125、已知抛物线yax2+3ax+c(a0)与y轴交于点A(1)若a0当a=1,c=1,求该抛物线与x轴交点坐标;点P(m,n)在二次函数抛物线yax2+3ax+c的图象上,且nc0,试求m的取值范围;(2)若抛物线恒在x轴下方,且符合条件的整数a只有三个,求实数c的最小值;(3)若点A的坐标是(0,1

    9、),当2cxc时,抛物线与x轴只有一个公共点,求a的取值范围.-参考答案-一、单选题1、B【解析】【分析】分别按照看错的情况构建出一元二次方程,再舍去错误信息,从而可得正确答案.【详解】解: 小红看错了常数项q,得到方程的两个根是3,1,所以此时方程为: 即: 小明看错了一次项系数P,得到方程的两个根是5,4,所以此时方程为: 即: 从而正确的方程是: 故选:【考点】本题考查的是根据一元二次方程的根构建一元二次方程,掌握利用一元二次方程的根构建方程的方法是解题的关键.2、D【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 设二次函数的解析式为:yax2bxc,根据题意列方程组即可

    10、得到结论【详解】解:设二次函数的解析式为:yax2+bx+c,当x55,y1800,当x75,y1800,当x80时,y1550, ,解得a2,b260,c6450,y与x的函数关系式是y2x2+260x64502(x65)2+2000,故选:D【考点】本题考查了根据实际问题列二次函数关系式,正确的列方程组是解题的关键3、C【解析】【分析】利用表中的数据,求得二次函数的解析式,再配成顶点式,根据二次函数的性质逐一分析即可判断【详解】解:设二次函数的解析式为,依题意得:,解得:,二次函数的解析式为=,这个函数的图象开口向上,故A选项不符合题意;,这个函数的图象与x轴有两个不同的交点,故B选项不符

    11、合题意;,当时,这个函数有最小值,故C选项符合题意;这个函数的图象的顶点坐标为(,),当时,y的值随x值的增大而增大,故D选项不符合题意;故选:C【考点】本题主要考查了待定系数法求二次函数的解析式以及二次函数的性质,利用二次函数的性质解答是解题关键4、D【解析】【分析】根据抛物线与轴的两个交点坐标确定对称轴后即可确定顶点坐标【详解】解:观察图象发现图象与轴交于点和,对称轴为,顶点坐标为,故选:D【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了二次函数的性质及二次函数的图象的知识,解题的关键是根据交点坐标确定对称轴,难度不大5、A【解析】【分析】由将ABC绕点A按顺时针旋转一定

    12、角度得到ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由B=60,可证得ABD是等边三角形,继而可得BD=AB=2,则可求得答案【详解】由旋转的性质可知,为等边三角形,故选A【考点】此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB二、多选题1、ABE【解析】【分析】根据抛物线的对称轴为直线x2,则有4a+b0,可得A正确;根据二次函数的对称性得到当x3时,函数值大于0,则9a+3b+c0,即9a+c3 b,可得B正确;由于x1时,y0,则ab+c0,易得c5a,所以7a-3b+2c9 a,再根据抛物线开口向下得a0,于是有7a3b+2c0,可得C错误;利用抛物线的对称

    13、性得到(3,)在抛物线上,然后利用二次函数的增减性可得D错误;作出直线 y3,然后依据函数图象进行判断可得E正确;综上即可得答案【详解】A项:x 2,4a+b0,故A正确B项:抛物线与x轴的一个交点为(-1,0),对称轴为直线x=2,另一个交点为(5,0),抛物线开口向下,当x3时,y0,即9a+3b+c0,9a+c3b,故B正确C项:抛物线与x轴的一个交点为(1,0),ab+c0b4a,a+4a+c0,即c5a,7a3b+2c7a+12a10a9a,抛物线开口向下,a0,7a3b+2c0,故C错误;D项:抛物线的对称轴为x2,C(7,)在抛物线上,点(3,)与C(7,)关于对称轴x2对称,A

    14、(3,)在抛物线上,=, 线 封 密 内 号学级年名姓 线 封 密 外 3 12 ,在对称轴的左侧,抛物线开口向下,y随x的增大而增大, ,故D错误E项:方程a(x+1)(x5)0的两根为x1或x5,过y3作x轴的平行线,直线y3与抛物线的交点的横坐标为方程的两根,抛物线与x轴交点为(-1,0),(5,0),依据函数图象可知:15,故E正确故答案为:ABE【点睛】本题考查了二次函数图象与系数的关系:二次函数y=ax+bx+c(a0),二次项系数a决定抛物线的开口方向和大小,当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数 a共同决定对称轴的位置,当a与b同号时(即a

    15、b0),对称轴在y轴左;当a与b异号时(即ab0),对称轴在y轴右;常数项c决定抛物线与 y轴交点抛物线与y轴交于(0,c);抛物线与x轴交点个数由决定,=b4ac0时,抛物线与x轴有2个交点;=b4ac=0时,抛物线与x轴有1个交点;= b4 ac0时,抛物线与x轴没有交点2、BD【解析】【分析】A、根据轴对称的性质判断即可; B、根据旋转变换的性质判断即可;C、根据中心对称的性质判断即可;D、根据平移变换的性质判断即可;【详解】A、点A与点B关于 轴对称,则点B的坐标为B(-2,-3),A选项错误,不符合题意;B、点绕原点按顺时针方向旋转后到点,则点的坐标为,B选项正确,符合题意;C、点与

    16、点关于原点中心对称,则点的坐标为B(2,-3),C选项错误,不符合题意;D、点先向上平移个单位,再向右平移个单位到点,则点的坐标为,D选项正确,符合题意;故选:BD【点睛】本题考查平移变换,轴对称变换,中心对称,旋转变换等知识,解题的关键是熟练掌握平移变换,旋转变换,轴对称变换,中心对称的性质,属于常考题型3、C【解析】【分析】由方程有两个相等的实数根,根据根的判别式可得到关于k的方程,则可求得k的值【详解】解:关于x的一元二次方程(k1)x2+4x+k10有两个相等的实数根,0,即424(k1)20,且k10,解得k3或k-1 线 封 密 内 号学级年名姓 线 封 密 外 故选C【点睛】本题

    17、考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b24ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键当0时,一元二次方程有两个不相等的实数根;当=0时,一元二次方程有两个相等的实数根;当0或m3(2)-9(3)或或【解析】【分析】(1)当,时,令时,求解方程的解即可;将P(m,n)代入yax2+3ax+c中,要使nc0,即可得,解出不等式即可;(2)根据抛物线恒在x轴下方,可得,求出a的取值范围,根据符合条件的整数a只有三个,判断并求出c的取值范围,从而求出c的最小值;(3)根据点A的坐标得到抛物线解析式为,然后根据2cxc时,抛物线与x轴只有一个公共点,分三种情况:当时,当时,当时,进行分类讨论求出符合题意的a的取值范围.(1)解:当,时,当时,解得:,抛物线与轴的交点坐标,;,解得:或;(2)解:抛物线恒在x轴下方,解得:,符合条件的整数a只有三个,解得:,的最小值为,(3)解:点A的坐标是(0,1),又当时,抛物线与x轴只有一个公共点,当时, 线 封 密 内 号学级年名姓 线 封 密 外 当时,当时,解得:,或者,无解当时,无解,或者,解得:,当时,解得:,此时,令时,则,解得:,符合题意,综合上述可知:a的取值范围为:或或.【点睛】此题主要考查的是函数图象与x轴的交点问题,在x的取值范围内,根据交点个数进行分类讨论,从而求出a的取值范围

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年人教版九年级数学上册期中模拟考试题 卷(Ⅱ)(解析卷).docx
    链接地址:https://www.ketangku.com/wenku/file-635234.html
    相关资源 更多
  • 专题24 与二次函数相关的压轴题-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版).docx专题24 与二次函数相关的压轴题-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版).docx
  • 专题24 三角函数中的化简求值(教师版).docx专题24 三角函数中的化简求值(教师版).docx
  • 专题24 、25估算题和电路设计电路动态变化-2021年全国中考物理真题专项汇编(第一期)(解析版).docx专题24 、25估算题和电路设计电路动态变化-2021年全国中考物理真题专项汇编(第一期)(解析版).docx
  • 专题24 unit 12 易错综合练习-2021-2022学年七年级下册单元重难点易错题精练(人教版).docx专题24 unit 12 易错综合练习-2021-2022学年七年级下册单元重难点易错题精练(人教版).docx
  • 专题24直线的方程-【中职专用】中职高考数学二轮复习专项突破.docx专题24直线的方程-【中职专用】中职高考数学二轮复习专项突破.docx
  • 专题24正弦定理和余弦定理-2021年新高考数学基础考点一轮复习.docx专题24正弦定理和余弦定理-2021年新高考数学基础考点一轮复习.docx
  • 专题24复数及推理与证明【多选题】(解析版).docx专题24复数及推理与证明【多选题】(解析版).docx
  • 专题24复数及推理与证明【多选题】(原卷版).docx专题24复数及推理与证明【多选题】(原卷版).docx
  • 专题23锐角三角函数-2021年中考数学真题分项汇编(原卷版)【全国通用】(第02期).docx专题23锐角三角函数-2021年中考数学真题分项汇编(原卷版)【全国通用】(第02期).docx
  • 专题23概率统计与图论(教师版含解析)-备战2021年高中数学联赛之历年真题汇编(1981-2020).docx专题23概率统计与图论(教师版含解析)-备战2021年高中数学联赛之历年真题汇编(1981-2020).docx
  • 专题23概率统计与图论(学生版)-备战2021年高中数学联赛之历年真题汇编(1981-2020).docx专题23概率统计与图论(学生版)-备战2021年高中数学联赛之历年真题汇编(1981-2020).docx
  • 专题23实验:探究加速度与物体受力、物体质量的关系.docx专题23实验:探究加速度与物体受力、物体质量的关系.docx
  • 专题23函数与矩形存在性问题-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(解析版).docx专题23函数与矩形存在性问题-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(解析版).docx
  • 专题23函数与矩形存在性问题-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(原卷版).docx专题23函数与矩形存在性问题-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(原卷版).docx
  • 专题23二面角、面面角大题专练B卷-2023届高三数学二轮专题复习.docx专题23二面角、面面角大题专练B卷-2023届高三数学二轮专题复习.docx
  • 专题23二次函数推理计算与证明综合问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(解析版).docx专题23二次函数推理计算与证明综合问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(解析版).docx
  • 专题23二次函数推理计算与证明综合问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx专题23二次函数推理计算与证明综合问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx
  • 专题23《不规则物体体积算法》2020-2021学年小升初数学真题汇编专项复习训练(全国通用).docx专题23《不规则物体体积算法》2020-2021学年小升初数学真题汇编专项复习训练(全国通用).docx
  • 专题23 相似形.docx专题23 相似形.docx
  • 专题23 实验:探究加速度与力、质量的关系.docx专题23 实验:探究加速度与力、质量的关系.docx
  • 专题23.6 解直角三角形章末九大题型总结(拔尖篇)(沪科版)(解析版).docx专题23.6 解直角三角形章末九大题型总结(拔尖篇)(沪科版)(解析版).docx
  • 专题23.6 解直角三角形章末九大题型总结(拔尖篇)(沪科版)(原卷版).docx专题23.6 解直角三角形章末九大题型总结(拔尖篇)(沪科版)(原卷版).docx
  • 专题23.4 解直角三角形章末拔尖卷(沪科版)(解析版).docx专题23.4 解直角三角形章末拔尖卷(沪科版)(解析版).docx
  • 专题23.4 解直角三角形章末拔尖卷(沪科版)(原卷版).docx专题23.4 解直角三角形章末拔尖卷(沪科版)(原卷版).docx
  • 专题23.3 构造直角三角形解题四大题型(沪科版)(解析版).docx专题23.3 构造直角三角形解题四大题型(沪科版)(解析版).docx
  • 专题23.2 解直角三角形【十大题型】(举一反三)(沪科版)(解析版).docx专题23.2 解直角三角形【十大题型】(举一反三)(沪科版)(解析版).docx
  • 专题23.2 解直角三角形【十大题型】(举一反三)(沪科版)(原卷版).docx专题23.2 解直角三角形【十大题型】(举一反三)(沪科版)(原卷版).docx
  • 专题23-申请信.docx专题23-申请信.docx
  • 专题23 阅读理解 议论文 - 2023年中考英语语法题型总复习宝典.docx专题23 阅读理解 议论文 - 2023年中考英语语法题型总复习宝典.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1