2022-2023学年人教版九年级数学上册第二十四章圆定向攻克试题.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 人教版 九年级 数学 上册 第二 十四 定向 攻克 试题
- 资源描述:
-
1、人教版九年级数学上册第二十四章圆定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ABC内接于O,A50E是边BC的中点,连接OE并延长,交O于点D,连接BD,则D的大小为()A55B65C6
2、0D752、已知点在半径为8的外,则()ABCD3、如图,螺母的外围可以看作是正六边形ABCDEF,已知这个正六边形的半径是2,则它的周长是()A6B12C12D244、如图,AB是O的直径,BC与O相切于点B,AC交O于点D,若ACB=50,则BOD等于()A40B50C60D805、如图所示,MN为O的弦,N=52,则MON的度数为()A38B52C76D1046、以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D为第一象限内O上的一点,若DAB25,则OCD()A50B40C70D307、下列4个说法中:直径是弦;弦是直径;任何一条直径所在的直线都是圆的对称轴;弧是半圆; 正
3、确的有()A1个B2个C3个D4个8、如图所示,矩形纸片中,把它分割成正方形纸片和矩形纸片后,分别裁出扇形和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则的长为()ABCD9、如图,在ABC中, AG平分CAB,使用尺规作射线CD,与AG交于点E,下列判断正确的是()AAG平分CDBC点E是ABC的内心D点E到点A,B,C的距离相等10、已知点在上则下列命题为真命题的是()A若半径平分弦则四边形是平行四边形B若四边形是平行四边形则C若则弦平分半径D若弦平分半径则半径平分弦第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示,AB、AC为O的两条弦,延长CA到点D,
4、AD=AB,若ADB=35,则BOC=_2、如图,已知是的直径,是的切线,连接交于点,连接若,则的度数是_3、如图,O的直径AB26,弦CDAB,垂足为E,OE:BE5:8,则CD的长为_4、如图,在中,的半径为点是边上的动点,过点作的一条切线(其中点为切点),则线段长度的最小值为_5、如图,边长相等的正五边形和正六边形拼接在一起,则ABC的度数为_三、解答题(5小题,每小题10分,共计50分)1、如图所示,(1)已知,求以为直径的半圆面积及扇形的面积;(2)若的长度未知,已知阴影甲的面积为16平方厘米,能否求阴影乙的面积?若能,请直接写出结果;若不能,请说明理由2、已知:A、B、C、D是O上
5、的四个点,且,求证:AC=BD3、(1)课本再现:在中,是所对的圆心角,是所对的圆周角,我们在数学课上探索两者之间的关系时,要根据圆心O与的位置关系进行分类图1是其中一种情况,请你在图2和图3中画出其它两种情况的图形,并从三种位置关系中任选一种情况证明;(2)知识应用:如图4,若的半径为2,分别与相切于点A,B,求的长4、如图,直线l:y2x1与抛物线C:y2x2bxc相交于点A(0,m),B(n,7)(1)填空:m ,n ,抛物线的解析式为 (2)将直线l向下移a(a0)个单位长度后,直线l与抛物线C仍有公共点,求a的取值范围(3)Q是抛物线上的一个动点,是否存在以AQ为直径的圆与x轴相切于
6、点P?若存在,请求出点P的坐标;若不存在,请说明理由5、如图,AB是O的直径,弦CDAB,垂足为E,如果AB10,CD8,求线段AE的长-参考答案-一、单选题1、B【解析】【分析】连接CD,根据圆内接四边形的性质得到CDB180A130,根据垂径定理得到ODBC,求得BDCD,根据等腰三角形的性质即可得到结论【详解】解:连接CD,A50,CDB180A130,E是边BC的中点,ODBC,BDCD,ODBODCBDC65,故选:B【考点】本题考查了圆内接四边形的性质,垂径定理,等腰三角形的性质等知识正确理解题意是解题的关键2、A【解析】【分析】根据点P与O的位置关系即可确定OP的范围【详解】解:
7、点P在圆O的外部,点P到圆心O的距离大于8,故选:A【考点】本题主要考查点与圆的位置关系,关键是要牢记判断点与圆的位置关系的方法3、C【解析】【分析】如图,先求解正六边形的中心角,再证明是等边三角形,从而可得答案【详解】解:如图,为正六边形的中心,为正六边形的半径,为等边三角形,正六边形ABCDEF的周长为故选:【考点】本题考查的是正多边形与圆,正多边形的半径,中心角,周长,掌握以上知识是解题的关键4、D【解析】【分析】根据切线的性质得到ABC=90,根据直角三角形的性质求出A,根据圆周角定理计算即可【详解】BC是O的切线,ABC=90,A=90-ACB=40,由圆周角定理得,BOD=2A=8
8、0,故选D【考点】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键5、C【解析】【分析】根据半径相等得到OM=ON,则M=N=52,然后根据三角形内角和定理计算MON的度数【详解】OM=ON,M=N=52,MON=180-252=76故选C【考点】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等)6、C【解析】【分析】根据圆周角定理求出DOB,根据等腰三角形性质求出OCD=ODC,根据三角形内角和定理求出即可【详解】解:连接OD,DAB=25,BOD=2DAB=50,COD=90-50=40,OC=OD,OCD=ODC=
9、(180-COD)=70,故选:C【考点】本题考查了圆周角定理,等腰三角形性质,三角形内角和定理的应用,主要考查学生的推理能力,题目比较典型,难度适中7、B【解析】【分析】根据弧的分类、圆的性质逐一判断即可【详解】解:直径是最长的弦,故正确;最长的弦才是直径,故错误;过圆心的任一直线都是圆的对称轴,故正确;半圆是弧,但弧不一定是半圆,故错误,正确的有两个,故选B【考点】本题考查了对圆的认识,熟知弦的定义、弧的分类是本题的关键8、B【解析】【分析】设AB=xcm,则DE=(6-x)cm,根据扇形的弧长等于圆锥底面圆的周长列出方程,求解即可【详解】设,则DE=(6-x)cm,由题意,得,解得. 故
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
